Predictive models;
Energy consumption;
Forecasting;
Biological system modeling;
Transformers;
Buildings;
Power demand;
Household power consumption;
transformers;
stationary wavelet transform;
time series forecasting;
SUPPORT VECTOR REGRESSION;
ELECTRICITY CONSUMPTION;
DEFECT DETECTION;
BASE-LINE;
BUILDINGS;
ENSEMBLE;
IMAGES;
MODEL;
D O I:
10.1109/ACCESS.2022.3140818
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this paper, we present a new method for forecasting power consumption. Household power consumption prediction is essential to manage and plan energy utilization. This study proposes a new technique using machine learning models based on the stationary wavelet transform (SWT) and transformers to forecast household power consumption in different resolutions. This approach works by leveraging self-attention mechanisms to learn complex patterns and dynamics from household power consumption data. The SWT and its inverse are used to decompose and reconstruct the actual and the forecasted household power consumption data, respectively, and deep transformers are used to forecast the SWT subbands. Experimental findings show that our hybrid approach achieves superior prediction performance compared to the existing power consumption prediction methods.
机构:
Gen Directorate Energy Affairs, Dept Energy Policies & Technol, TR-06520 Ankara, TurkeyGen Directorate Energy Affairs, Dept Energy Policies & Technol, TR-06520 Ankara, Turkey
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Kong, Weicong
;
Dong, Zhao Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Dong, Zhao Yang
;
Jia, Youwei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Hong Kong, Peoples R ChinaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Jia, Youwei
;
Hill, David J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch EIE, Sydney, NSW 2006, Australia
Univ Hong Kong, Hong Kong, Peoples R ChinaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Hill, David J.
;
Xu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Singapore, SingaporeUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Xu, Yan
;
Zhang, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
机构:
Gen Directorate Energy Affairs, Dept Energy Policies & Technol, TR-06520 Ankara, TurkeyGen Directorate Energy Affairs, Dept Energy Policies & Technol, TR-06520 Ankara, Turkey
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Kong, Weicong
;
Dong, Zhao Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Dong, Zhao Yang
;
Jia, Youwei
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Hong Kong, Peoples R ChinaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Jia, Youwei
;
Hill, David J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sydney, Sch EIE, Sydney, NSW 2006, Australia
Univ Hong Kong, Hong Kong, Peoples R ChinaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Hill, David J.
;
Xu, Yan
论文数: 0引用数: 0
h-index: 0
机构:
Nanyang Technol Univ, Singapore, SingaporeUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia
Xu, Yan
;
Zhang, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Univ New South Wales, Sch EE&T, Sydney, NSW 2052, AustraliaUniv New South Wales, Sch EE&T, Sydney, NSW 2052, Australia