MMF: A Multi-scale MobileNet based fusion method for infrared and visible image

被引:18
作者
Liu, Yi [1 ,3 ,5 ]
Miao, Changyun [2 ,5 ]
Ji, Jianhua [1 ,4 ,5 ]
Li, Xianguo [2 ,5 ]
机构
[1] Tiangong Univ, Sch Mech Engn, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Elect & Elect Engn, Tianjin 300387, Peoples R China
[3] Tiangong Univ, Ctr Engn Internship & Training, Tianjin 300387, Peoples R China
[4] Tianjin Univ Renai Coll, Dept Informat Engn, Tianjin 301636, Peoples R China
[5] Tiangong Univ, Tianjin Photoelect Detect Technol & Syst Key Lab, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Image fusion; Infrared image; CNN; MobileNet; Anisotropic Diffusion;
D O I
10.1016/j.infrared.2021.103894
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
To improve the quality and real-time performance of the image fusion for target recognition and tracking, a multi-scale MobileNet based fusion (MMF) method for the infrared and visible image is proposed. We adopt an end-to-end convolutional neural network (CNN) composed of only three layers to fuse the source images. The first layer maps the input images to a high dimensional feature space, the second layer extracts the high dimensional features of the input images by the multi-scale MobileNet block (MMB), and the third layer combines the high dimensional features to generate the fused image. To enhance the saliency recognition and detail preservation ability of the fusion network, anisotropic diffusion (AD) filter is introduced to the loss function. Experimental results show that our fusion method achieves state-of-art performance in qualitative and quantitative evaluation and is 1-2 orders of magnitude faster than the representative image fusion methods based on CNN.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
Alexander T., 2014, TNO Image Fusion Dataset, DOI 10.6084/m9.figshare.1008029.v2
[2]   Fusion of Infrared and Visible Sensor Images Based on Anisotropic Diffusion and Karhunen-Loeve Transform [J].
Bavirisetti, Durga Prasad ;
Dhuli, Ravindra .
IEEE SENSORS JOURNAL, 2016, 16 (01) :203-209
[3]  
Chipman L. J., 1995, Proceedings. International Conference on Image Processing (Cat. No.95CB35819), P248, DOI 10.1109/ICIP.1995.537627
[4]   Infrared and Visible Image Fusion Using Detail Enhanced Channel Attention Network [J].
Cui, Yinghan ;
Du, Huiqian ;
Mei, Wenbo .
IEEE ACCESS, 2019, 7 :182185-182197
[5]   Image quality measures and their performance [J].
Eskicioglu, AM ;
Fisher, PS .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1995, 43 (12) :2959-2965
[6]   Thermal cameras and applications: a survey [J].
Gade, Rikke ;
Moeslund, Thomas B. .
MACHINE VISION AND APPLICATIONS, 2014, 25 (01) :245-262
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Howard AG., 2017, ARXIV, V2017
[9]   Searching for MobileNetV3 [J].
Howard, Andrew ;
Sandler, Mark ;
Chu, Grace ;
Chen, Liang-Chieh ;
Chen, Bo ;
Tan, Mingxing ;
Wang, Weijun ;
Zhu, Yukun ;
Pang, Ruoming ;
Vasudevan, Vijay ;
Le, Quoc V. ;
Adam, Hartwig .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1314-1324
[10]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]