Experimental Studies on Rock Thin-Section Image Classification by Deep Learning-Based Approaches

被引:18
作者
Li, Diyuan [1 ]
Zhao, Junjie [1 ]
Ma, Jinyin [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
rock; rock thin-section image; image classification; convolutional neural network; deep learning; IDENTIFICATION; VISION; SR;
D O I
10.3390/math10132317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Experimental studies were carried out to analyze the impact of optimizers and learning rate on the performance of deep learning-based algorithms for rock thin-section image classification. A total of 2634 rock thin-section images including three rock types-metamorphic, sedimentary, and volcanic rocks-were acquired from an online open-source science data bank. Four CNNs using three different optimizer algorithms (Adam, SGD, RMSprop) under two learning-rate decay schedules (lambda and cosine decay modes) were trained and validated. Then, a systematic comparison was conducted based on the performance of the trained model. Precision, f1-scores, and confusion matrix were adopted as the evaluation indicators. Trials revealed that deep learning-based approaches for rock thin-section image classification were highly effective and stable. Meanwhile, the experimental results showed that the cosine learning-rate decay mode was the better option for learning-rate adjustment during the training process. In addition, the performance of the four neural networks was confirmed and ranked as VGG16, GoogLeNet, MobileNetV2, and ShuffleNetV2. In the last step, the influence of optimization algorithms was evaluated based on VGG16 and GoogLeNet, and the results demonstrated that the capabilities of the model using Adam and RMSprop optimizers were more robust than that of SGD. The experimental study in this paper provides important practical value for training a high-precision rock thin-section image classification model, which can also be transferred to other similar image classification tasks.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] Deep Learning-Based Noise Type Classification and Removal for Drone Image Restoration
    Ahmed, Waqar
    Khan, Sajid
    Noor, Adeeb
    Mujtaba, Ghulam
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (03) : 4287 - 4306
  • [42] Deep Learning-Based Approaches for Fault Detection in Disc Mower
    Stroescu, Victor-Constantin
    Olcay, Ertug
    IFAC PAPERSONLINE, 2022, 55 (06): : 217 - 221
  • [43] Investigation of Efficient Approaches and Applications for Image Classification Through Deep Learning
    Khandelwal, Shruti
    Prajapat, Shaligram
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2023, 2024, 1453 : 471 - 487
  • [44] A Comprehensive Review of Deep Learning-Based Crack Detection Approaches
    Hamishebahar, Younes
    Guan, Hong
    So, Stephen
    Jo, Jun
    APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [45] Detection System for Construction Image Classification Based on Deep Learning Models
    Dai, Jiajie
    Liu, Ruijun
    Luo, Ouwen
    Ning, Zhiyuan
    2022 INTERNATIONAL CONFERENCE ON BIG DATA, INFORMATION AND COMPUTER NETWORK (BDICN 2022), 2022, : 728 - 731
  • [46] Deep learning based image classification for embedded devices: A systematic review
    Moreira, Larissa Ferreira Rodrigues
    Moreira, Rodrigo
    Travencolo, Bruno Augusto Nassif
    Backes, Andre Ricardo
    NEUROCOMPUTING, 2025, 623
  • [47] Deep Learning-Based Phenological Event Modeling for Classification of Crops
    Arun, Pattathal V.
    Karnieli, Arnon
    REMOTE SENSING, 2021, 13 (13)
  • [48] A Hybrid Deep Learning-Based Approach for Brain Tumor Classification
    Raza, Asaf
    Ayub, Huma
    Khan, Javed Ali
    Ahmad, Ijaz
    Salama, Ahmed S.
    Daradkeh, Yousef Ibrahim
    Javeed, Danish
    Rehman, Ateeq Ur
    Hamam, Habib
    ELECTRONICS, 2022, 11 (07)
  • [49] Deep Learning-Based Gender Classification by Training With Fake Data
    Oulad-Kaddour, Mohamed
    Haddadou, Hamid
    Vilda, Cristina Conde
    Palacios-Alonso, Daniel
    Benatchba, Karima
    Cabello, Enrique
    IEEE ACCESS, 2023, 11 : 120766 - 120779
  • [50] A Comparative Text Classification Study with Deep Learning-Based Algorithms
    Koksal, Omer
    Akgul, Ozlem
    2022 9TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2022), 2022, : 387 - 391