Experimental Studies on Rock Thin-Section Image Classification by Deep Learning-Based Approaches

被引:18
|
作者
Li, Diyuan [1 ]
Zhao, Junjie [1 ]
Ma, Jinyin [1 ]
机构
[1] Cent South Univ, Sch Resources & Safety Engn, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
rock; rock thin-section image; image classification; convolutional neural network; deep learning; IDENTIFICATION; VISION; SR;
D O I
10.3390/math10132317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Experimental studies were carried out to analyze the impact of optimizers and learning rate on the performance of deep learning-based algorithms for rock thin-section image classification. A total of 2634 rock thin-section images including three rock types-metamorphic, sedimentary, and volcanic rocks-were acquired from an online open-source science data bank. Four CNNs using three different optimizer algorithms (Adam, SGD, RMSprop) under two learning-rate decay schedules (lambda and cosine decay modes) were trained and validated. Then, a systematic comparison was conducted based on the performance of the trained model. Precision, f1-scores, and confusion matrix were adopted as the evaluation indicators. Trials revealed that deep learning-based approaches for rock thin-section image classification were highly effective and stable. Meanwhile, the experimental results showed that the cosine learning-rate decay mode was the better option for learning-rate adjustment during the training process. In addition, the performance of the four neural networks was confirmed and ranked as VGG16, GoogLeNet, MobileNetV2, and ShuffleNetV2. In the last step, the influence of optimization algorithms was evaluated based on VGG16 and GoogLeNet, and the results demonstrated that the capabilities of the model using Adam and RMSprop optimizers were more robust than that of SGD. The experimental study in this paper provides important practical value for training a high-precision rock thin-section image classification model, which can also be transferred to other similar image classification tasks.
引用
收藏
页数:28
相关论文
共 50 条
  • [31] Research on Image Classification Based on Deep Learning
    Li, Jiao
    Nanchang, Cheng
    Song, Kang
    2021 IEEE/ACIS 20TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2021-SUMMER), 2021, : 132 - 136
  • [32] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252
  • [33] Comparative Study of Deep Learning-Based Sentiment Classification
    Seo, Seungwan
    Kim, Czangyeob
    Kim, Haedong
    Mo, Kyounghyun
    Kang, Pilsung
    IEEE ACCESS, 2020, 8 (08): : 6861 - 6875
  • [34] Deep learning-based CT image for pulmonary nodule classification with intrathoracic fat: A multicenter study
    Miao, Shidi
    Xuan, Qifan
    Jia, Qingchun
    Jiang, Yuyang
    Jia, Haobo
    An, Yunfei
    Huang, Wenjuan
    Li, Jing
    Qi, Hongzhuo
    Li, Ao
    Wang, Qiujun
    Liu, Zengyao
    Wang, Ruitao
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100
  • [35] A Fair Evaluation of Various Deep Learning-Based Document Image Binarization Approaches
    Sukesh, Richin
    Seuret, Mathias
    Nicolaou, Anguelos
    Mayr, Martin
    Christlein, Vincent
    DOCUMENT ANALYSIS SYSTEMS, DAS 2022, 2022, 13237 : 771 - 785
  • [36] Fingerprint Classification Based on Deep Learning Approaches: Experimental Findings and Comparisons
    Militello, Carmelo
    Rundo, Leonardo
    Vitabile, Salvatore
    Conti, Vincenzo
    SYMMETRY-BASEL, 2021, 13 (05):
  • [37] Deep learning-based roadway crack classification with heterogeneous image data fusion
    Zhou, Shanglian
    Song, Wei
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2021, 20 (03): : 1274 - 1293
  • [38] An Explainable Deep Learning-Based Classification Method for Facial Image Quality Assessment
    Gurjar, Kuldeep
    Kumar, Surjeet
    Bhavsar, Arnav
    Hamad, Kotiba
    Moon, Yang-Sae
    Yoon, Dae Ho
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2024, 20 (04): : 558 - 573
  • [39] Deep learning-based classification of dementia using image representation of subcortical signals
    Ranjan, Shivani
    Tripathi, Ayush
    Shende, Harshal
    Badal, Robin
    Kumar, Amit
    Yadav, Pramod
    Joshi, Deepak
    Kumar, Lalan
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2025, 25 (01)
  • [40] Deep Learning-Based Image Classification for Major Mosquito Species Inhabiting Korea
    Lee, Sangjun
    Kim, Hangi
    Cho, Byoung-Kwan
    INSECTS, 2023, 14 (06)