Classification and existence of non-oscillatory solutions of second-order neutral delay difference equations

被引:1
作者
Zhou, Y [1 ]
Zhang, BG
机构
[1] Xiangtan Univ, Dept Math, Xiangtan 411105, Hunan, Peoples R China
[2] Ocean Univ Qingdao, Dept Appl Math, Qingdao 266003, Peoples R China
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2001年 / 20卷 / 01期
关键词
neutral difference equations; non-oscillatory solutions;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a classification of non-oscillatory solutions of a second-order neutral delay difference equation of the form Delta (2)(x(n) - c(n)x(n-tau) ) + f(n, x(g1(n)),...,x(gm(n))) = 0 (n greater than or equal to n(0) is an element of N). Some existence results for each kind of non-oscillatory solutions are also established.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 7 条
[1]  
Agarwal R.P., 1997, Advanced Topics in Difference Equations, DOI 10.1007/978-94-015-8899-7
[2]   Oscillatory and nonoscillatory behavior of second-order neutral delay difference equations II [J].
Agarwal, RP ;
Manuel, MMS ;
Thandapani, E .
APPLIED MATHEMATICS LETTERS, 1997, 10 (02) :103-109
[3]   Oscillatory and nonoscillatory behavior of second order neutral delay difference equations [J].
Agarwal, RP ;
Manuel, MMS ;
Thandapani, E .
MATHEMATICAL AND COMPUTER MODELLING, 1996, 24 (01) :5-11
[4]  
Agarwal RP, 1992, Difference equations and inequalities
[5]  
LU WD, 1993, ACTA MATH SINICA, V36, P476
[6]  
WEI J, 1992, ACTA MATH APPL SINIC, V15, P37
[7]   Oscillation and nonoscillation for second-order linear difference equations [J].
Zhang, BG ;
Zhou, Y .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (1-2) :1-7