Stabilizing chaotic vortex trajectories: An example of high-dimensional control

被引:13
作者
Pentek, A
Kadtke, JB
Toroczkai, Z
机构
[1] VIRGINIA POLYTECH INST & STATE UNIV, DEPT PHYS, BLACKSBURG, VA 24061 USA
[2] EOTVOS LORAND UNIV, INST THEORET PHYS, H-1088 BUDAPEST, HUNGARY
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(96)00792-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A chaos control algorithm is developed to actively stabilize unstable periodic orbits of higher-dimensional systems. The method assumes knowledge of the model equations and a small number of experimentally accessible parameters. General conditions for controllability are discussed. The algorithm is applied to the Hamiltonian problem of point vortices inside a circular cylinder with applications to an experimental plasma system.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 24 条
[1]   MOTION OF 3 VORTICES [J].
AREF, H .
PHYSICS OF FLUIDS, 1979, 22 (03) :393-400
[3]   Controlling chaos in high dimensions: Theory and experiment [J].
Ding, MZ ;
Yang, WM ;
In, V ;
Ditto, WL ;
Spano, ML ;
Gluckman, B .
PHYSICAL REVIEW E, 1996, 53 (05) :4334-4344
[4]   MEASUREMENTS OF SYMMETRICAL VORTEX MERGER [J].
FINE, KS ;
DRISCOLL, CF ;
MALMBERG, JH ;
MITCHELL, TB .
PHYSICAL REVIEW LETTERS, 1991, 67 (05) :588-591
[5]   RELAXATION OF 2D TURBULENCE TO VORTEX CRYSTALS [J].
FINE, KS ;
CASS, AC ;
FLYNN, WG ;
DRISCOLL, CF .
PHYSICAL REVIEW LETTERS, 1995, 75 (18) :3277-3280
[6]  
Havelock TH, 1931, PHILOS MAG, V11, P617
[7]   CONTROLLED CAPTURE OF A CONTINUOUS VORTICITY DISTRIBUTION [J].
KADTKE, J ;
PENTEK, A ;
PEDRIZZETTI, G .
PHYSICS LETTERS A, 1995, 204 (02) :108-114
[8]  
KADTKE JB, 1987, THESIS BROWN U
[9]   DIOCOTRON INSTABILITY IN A CYLINDRICAL GEOMETRY [J].
LEVY, RH .
PHYSICS OF FLUIDS, 1965, 8 (07) :1288-&
[10]  
NOVIKOV EA, 1978, ZH EKSP TEOR FIZ, V48, P440