共 126 条
Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow
被引:8
作者:
Nayak, Gourav
[1
]
Kumar, Ashwini
[1
,2
]
Bikkina, Srinivas
[1
]
Tiwari, Shani
[1
]
Sheteye, Suhas S.
[1
]
Sudheer, A. K.
[3
]
机构:
[1] CSIR Natl Inst Oceanog, Geol Oceanog Div, Panaji 403004, Goa, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad, India
[3] Dept Space, Phys Res Lab, Ahmadabad, Gujarat, India
关键词:
SOLUBLE ORGANIC-CARBON;
LONG-RANGE TRANSPORT;
BROWN CARBON;
BLACK CARBON;
ELEMENTAL CARBON;
CHEMICAL CHARACTERISTICS;
ATMOSPHERIC-POLLUTION;
CRYOSPHERIC CHANGE;
INDIAN-OCEAN;
ARABIAN SEA;
D O I:
10.1039/d1em00347j
中图分类号:
O65 [分析化学];
学科分类号:
070302 ;
081704 ;
摘要:
The marine atmosphere of the Bay of Bengal (BoB) is prone to get impacted by anthropogenic aerosols from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA), particularly during the northeast monsoon (NEM). In this study, we quantify and characterize carbonaceous aerosols and their absorption properties collected in two cruise campaigns onboard ORV Sindhu Sadhana during the continental outflow period over the BoB. Aerosol samples were classified based on the air mass back trajectory analyses, wherein samples were impacted by the continental air parcel (CAP), marine air parcel (MAP), and mix of both (CAP + MAP). Significant variability in the PM10 mass concentration (in mu g m(-3)) is found with a maximum value for MAP samples (75.5 +/- 36.4) followed by CAP + MAP (58.5 +/- 27.3) and CAP (58.5 +/- 27.3). The OC/EC ratio (>2) and diagnostic tracers i.e. nss-K+/EC (0.2-0.96) and nss-K+/OC (0.11-1.32) along with the absorption angstrom exponent (AAE: 4.31-6.02) and MODIS (Moderate Resolution Imaging Spectroradiometer) derived fire counts suggest the dominance of biomass burning emission sources. A positive correlation between OC and EC (i.e. r = 0.86, 0.70, and 0.42 for CAP, MAP, and CAP + MAP, respectively) further confirmed the similar emission sources of carbonaceous species. Similarly, a significant correlation between estimated secondary organic carbon (SOC) and water-soluble organic carbon (WSOC; r = 0.99, 0.96, and 0.97 for CAP, MAP, and CAP + MAP, respectively) indicate their similar chemical nature as well as dominant contribution of SOC to WSOC. The absorption coefficient (b(abs-365)) and mass absorption efficiency (MAE(BrC-365)) of the soluble fraction were estimated at 365 nm wherein, b(abs-365) showed a linear relationship with WSOC and nss-K+, signifying the contribution of water soluble brown carbon from biomass burning emissions. The estimated MAE(BrC-365) (0.30-0.93 m(2) g(-1)), during this study, was consistent with the earlier observations over the BoB, particularly during the continental outflow season.
引用
收藏
页码:72 / 88
页数:17
相关论文