Metal-Free Single Atom Catalyst for N2 Fixation Driven by Visible Light

被引:907
作者
Ling, Chongyi [1 ,2 ]
Niu, Xianghong [3 ]
Li, Qang [1 ]
Du, Aijun [2 ]
Wang, Jinlan [1 ]
机构
[1] Southeast Univ, Sch Phys, Nanjing 211189, Jiangsu, Peoples R China
[2] Queensland Univ Technol, Sch Chem Phys & Mech Engn, Sci & Engn Fac, Gardens Point Campus, Brisbane, Qld 4001, Australia
[3] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210046, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
GRAPHITIC CARBON NITRIDE; AMMONIA-SYNTHESIS; FREE ELECTROCATALYSTS; NITROGEN REDUCTION; DOPED CARBON; AMBIENT CONDITIONS; GRAPHENE; WATER; DINITROGEN; PHOTOCATALYST;
D O I
10.1021/jacs.8b07472
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar nitrogen (N-2) fixation is the most attractive way for the sustainable production of ammonia (NH3), but the development of a highly active, long-term stable and low-cost catalyst remains a great challenge. Current research efforts for N-2 reduction mainly focus on the metal-based catalysts using the electrochemical approach, while metal-free or solar-driven catalysts have been rarely explored. Herein, on the basis of a concept of electron "acceptance-donation", a metal-free photocatalyst, namely, boron (B) atom, decorated on the optically active graphitic-carbon nitride (B/g-C3N4), for the reduction of N-2 is proposed by using extensive first-principles calculations. Our results reveal that gas phase N-2 can be efficiently reduced into NH3 on B/g-C3N4 through the enzymatic mechanism with a record low onset potential (0.20 V). Moreover, the B-decorated g-C3N4 can significantly enhance the visible light absorption, rendering them ideal for solar-driven reduction of N-2. Importantly, the as-designed catalyst is further demonstrated to hold great promise for synthesis due to its extremely high stability. Our work is the first report of metal-free single atom photocatalyst for N-2 reduction, offering cost-effective opportunities for advancing sustainable NH3 production.
引用
收藏
页码:14161 / 14168
页数:8
相关论文
共 60 条
[1]   Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon [J].
Ali, Muataz ;
Zhou, Fengling ;
Chen, Kun ;
Kotzur, Christopher ;
Xiao, Changlong ;
Bourgeois, Laure ;
Zhang, Xinyi ;
MacFarlane, Douglas R. .
NATURE COMMUNICATIONS, 2016, 7
[2]   Promising prospects for 2D d2-d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia [J].
Azofra, Luis Miguel ;
Li, Neng ;
MacFarlane, Douglas R. ;
Sun, Chenghua .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) :2545-2549
[3]   Photochemical Nitrogen Conversion to Ammonia in Ambient Conditions with FeMoS-Chalcogels [J].
Banerjee, Abhishek ;
Yuhas, Benjamin D. ;
Margulies, Eric A. ;
Zhang, Yongbo ;
Shim, Yurina ;
Wasielewski, Michael R. ;
Kanatzidis, Mercouri G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (05) :2030-2034
[4]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[5]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[6]   Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Chen, Sheng ;
Bi, Jiyu ;
Zhao, Yu ;
Yang, Lijun ;
Zhang, Chen ;
Ma, Yanwen ;
Wu, Qiang ;
Wang, Xizhang ;
Hu, Zheng .
ADVANCED MATERIALS, 2012, 24 (41) :5593-5597
[7]   Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst [J].
Chen, Shiming ;
Perathoner, Siglinda ;
Ampelli, Claudio ;
Mebrahtu, Chalachew ;
Su, Dangsheng ;
Centi, Gabriele .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (10) :2699-2703
[8]   Metal-Free Catalysts for Oxygen Reduction Reaction [J].
Dai, Liming ;
Xue, Yuhua ;
Qu, Liangti ;
Choi, Hyun-Jung ;
Baek, Jong-Beom .
CHEMICAL REVIEWS, 2015, 115 (11) :4823-4892
[9]   Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron-Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response [J].
Du, Aijun ;
Sanvito, Stefano ;
Li, Zhen ;
Wang, Dawei ;
Jiao, Yan ;
Liao, Ting ;
Sun, Qiao ;
Ng, Yun Hau ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (09) :4393-4397
[10]   Single Atom (Pd/Pt) Supported on Graphitic Carbon Nitride as an Efficient Photocatalyst for Visible-Light Reduction of Carbon Dioxide [J].
Gao, Guoping ;
Jiao, Yan ;
Waclawik, Eric R. ;
Du, Aijun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (19) :6292-6297