SMOOTH-INVARIANT GAUSSIAN FEATURES FOR DYNAMIC TEXTURE RECOGNITION
被引:0
|
作者:
Thanh Tuan Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Aix Marseille Univ, CNRS, ENSAM, LIS,UMR 7020, F-13397 Marseille, France
HCMC Univ Technol & Educ, Fac IT, Hcm City, VietnamUniv Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Thanh Tuan Nguyen
[1
,2
,3
]
Thanh Phuong Nguyen
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Aix Marseille Univ, CNRS, ENSAM, LIS,UMR 7020, F-13397 Marseille, FranceUniv Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Thanh Phuong Nguyen
[1
,2
]
Bouchara, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Aix Marseille Univ, CNRS, ENSAM, LIS,UMR 7020, F-13397 Marseille, FranceUniv Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
Bouchara, Frederic
[1
,2
]
机构:
[1] Univ Toulon & Var, CNRS, LIS, UMR 7020, F-83957 La Garde, France
An efficient framework for dynamic texture (DT) representation is proposed by exploiting local features based on Local Binary Patterns (LBP) from filtered images. First, Gaussian smoothing filter is used to deal with near uniform regions and noise which are typical restrictions of LBP operator. Second, the receptive field of Difference of Gaussians (DoG), which is exploited in DT description for the first time, allows to make the descriptor more robust against the changes of environment, illumination, and scale which are main challenges in DT representation. Experimental results of DT recognition on different benchmark datasets (i.e., UCLA, DynTex, and DynTex++), which give outstanding performance compared to the state of the art, verify the interest of our proposal.
机构:
Univ Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
HCMC Univ Technol & Educ, Fac IT, Ho Chi Minh City, VietnamUniv Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
Nguyen, Thanh Tuan
Nguyen, Phuong Thanh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
Ton Duc Thang Univ, Fac Informat Technol, AI Lab, Ho Chi Minh City, VietnamUniv Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France
Nguyen, Phuong Thanh
Bouchara, Frederic
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, FranceUniv Toulon & Var, Aix Marseille Univ, LIS, CNRS, Marseille, France