Simultaneous approximation and interpolation of functions on continua in the complex plane

被引:9
作者
Andrievskii, VV
Pritsker, IE
Varga, RS [1 ]
机构
[1] Kent State Univ, Inst Computat Math, Kent, OH 44242 USA
[2] Oklahoma State Univ, Dept Math, Stillwater, OK 74078 USA
[3] GSF, Forschungszentrum, Inat Biomath & Biometrie, D-85764 Neuherberg, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2001年 / 80卷 / 04期
基金
美国国家科学基金会;
关键词
polynomial approximation; interpolation; analytic functions; quasiconformal curve;
D O I
10.1016/S0021-7824(00)01197-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct polynomial approximations of Dzjadyk type (in terms of the k-th modulus of continuity, k greater than or equal to 1) for analytic functions defined on a continuum E in the complex plane, which simultaneously interpolate at given points of E. Furthermore, the error in this approximation is decaying e(-cn alpha) strictly inside E, where c and alpha are positive constants independent of the degree n of the as e approximating polynomial. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:373 / 388
页数:16
相关论文
共 38 条
[1]  
Ahlfors L.V., 1966, LECT QUASICONFORMAL
[2]   A discrepancy theorem on quasiconformal curves [J].
Andrievskii, VV ;
Blatt, HP .
CONSTRUCTIVE APPROXIMATION, 1997, 13 (03) :363-379
[3]  
Andrievskii VV., 1995, CONFORMAL INVARIANTS
[4]  
ANDRIEVSKII VV, 1986, MATH USSR SB, V54, P39, DOI DOI 10.1070/SM1986V054N01ABEH002959
[5]   CONFORMAL MAPPINGS AND APPROXIMATION OF ANALYTIC-FUNCTIONS IN DOMAINS WITH A QUASICONFORMAL BOUNDARY [J].
BELYI, VI .
MATHEMATICS OF THE USSR-SBORNIK, 1977, 31 (03) :289-317
[6]  
BERNSTEIN S, 1932, COMMUNICATIONS KHARK, V5, P49
[7]  
DYNKIN EM, 1981, T MAT I STEKLOVA, V155, P41
[8]  
Dzjadyk V. K., 1977, INTRO THEORY UNIFORM
[9]   On some convergence properties of the interpolation polynomials [J].
Erdos, P .
ANNALS OF MATHEMATICS, 1943, 44 :330-337
[10]   ON BOUNDEDNESS AND UNBOUNDEDNESS OF POLYNOMIALS [J].
ERDOS, P .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 19 :135-&