Robust stabilisation of distributed-order systems

被引:4
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
[41]   Energy-based stabilisation and H∞ robust stabilisation of stochastic non-linear systems [J].
Liu, Yan-Hong ;
Cao, Gui-Zhou ;
Tang, Shu-Xia ;
Cai, Xiu-Shan ;
Peng, Jin-Zhu .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (02) :318-325
[42]   Robust stabilisation of linear time-invariant time-delay systems via first order and super-twisting sliding mode controllers [J].
Ramirez Jeronimo, Luis F. ;
Zenteno Torres, Jazmin ;
Saldivar, Belem ;
Davila, Jorge ;
Avila Vilchis, Juan Carlos .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (01) :175-186
[43]   A high-order space-time spectral method for the distributed-order time-fractional telegraph equation [J].
Derakhshan, M. H. ;
Kumar, Pushpendra ;
Salahshour, Soheil .
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) :2778-2794
[44]   Computational technique for a class of nonlinear distributed-order fractional boundary value problems with singular coefficients [J].
Arianfar, M. ;
Moghaddam, B. Parsa ;
Babaei, A. .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (06)
[45]   Novel looped functionals for sampled-data-based robust stabilisation of a class of nonlinear systems [J].
Ma, Xiuli ;
Liu, Bo ;
Jia, Xinchun .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2025,
[46]   Stability analysis of distributed order of Hilfer nonlinear systems [J].
Fernandez-Anaya, G. ;
Quezada-Tellez, L. A. ;
Franco-Perez, L. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) :4137-4155
[47]   Stabilisation of second-order LTI switched positive systems [J].
Zheng, Yan ;
Feng, Gang .
INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (08) :1387-1397
[48]   Robust stabilisation of time-varying delay systems with probabilistic uncertainties [J].
Jiang, Ning ;
Xiong, Junlin ;
Lam, James .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2016, 47 (12) :3016-3026
[49]   Robust state feedback stabilisation of positive LTI systems with polytopic uncertainty [J].
Abolpour, Roozbeh ;
Dehghani, Maryam ;
Sadabadi, Mandieh S. .
INTERNATIONAL JOURNAL OF CONTROL, 2023, 96 (12) :3183-3194
[50]   Robust stabilisation of uncertain delayed Markovian jump systems and its applications [J].
Wang, Guoliang ;
Zhang, Qingling ;
Yang, Chunyu .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (06) :1226-1241