Robust stabilisation of distributed-order systems

被引:4
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
[31]   Calculation of Distributed-Order Fractional Derivative on Tensor Cores-Enabled GPU [J].
Vsevolod Bohaienko .
International Journal of Parallel Programming, 2023, 51 :256-270
[32]   Calculation of Distributed-Order Fractional Derivative on Tensor Cores-Enabled GPU [J].
Bohaienko, Vsevolod .
INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2023, 51 (4-5) :256-270
[33]   Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach [J].
Badri, Pouya ;
Sojoodi, Mahdi .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (09) :1718-1730
[34]   Global stabilisation of a class of feedforward systems with distributed delays [J].
Liu, Qingrong ;
Liang, Zhishan .
IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (01) :140-146
[35]   Variational Problems with Time Delay and Higher-Order Distributed-Order Fractional Derivatives with Arbitrary Kernels [J].
Cruz, Fatima ;
Almeida, Ricardo ;
Martins, Natalia .
MATHEMATICS, 2021, 9 (14)
[36]   Robust fault-tolerant stabilisation of uncertain high-order fully actuated systems with actuator faults [J].
Gong, Mengtong ;
Sheng, Li ;
Zhou, Donghua .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (12) :2518-2530
[37]   Optimality conditions for variational problems involving distributed-order fractional derivatives with arbitrary kernels [J].
Cruz, Fatima ;
Almeida, Ricardo ;
Martins, Natalia .
AIMS MATHEMATICS, 2021, 6 (05) :5351-5369
[38]   Herglotz Variational Problems Involving Distributed-Order Fractional Derivatives with Arbitrary Smooth Kernels [J].
Cruz, Fatima ;
Almeida, Ricardo ;
Martins, Natalia .
FRACTAL AND FRACTIONAL, 2022, 6 (12)
[39]   Numerical investigation of distributed-order fractional optimal control problems via Bernstein wavelets [J].
Rahimkhani, P. ;
Ordokhani, Y. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (01) :355-373
[40]   Energy-based stabilisation and H∞ robust stabilisation of stochastic non-linear systems [J].
Liu, Yan-Hong ;
Cao, Gui-Zhou ;
Tang, Shu-Xia ;
Cai, Xiu-Shan ;
Peng, Jin-Zhu .
IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (02) :318-325