Robust stabilisation of distributed-order systems

被引:4
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
[21]   Nonconservative LMI techniques for robust stabilisation of spatially interconnected systems [J].
Zhai, Xiaokai ;
Xu, Huiling .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (01) :126-140
[22]   Stability of Fractional-order Population Growth Model Based on Distributed-order Approach [J].
Li Yan ;
Chen YangQuan ;
Zhai Lun .
2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, :2586-2591
[23]   DISTRIBUTED-ORDER SPACE-TIME FRACTIONAL DIFFUSIONS IN BOUNDED DOMAINS [J].
Guerngar, Ngartelbaye ;
Mccormick, James .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10) :2783-2799
[24]   On the formulation and numerical simulation of distributed-order fractional optimal control problems [J].
Zaky, M. A. ;
Tenreiro Machado, J. A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 :177-189
[25]   Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model [J].
Bazhlekova, Emilia ;
Bazhlekov, Ivan .
PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
[26]   Robust stabilisation of a class of uncertain nonlinear systems [J].
Efimov, Denis ;
Raïssi, Tarek ;
Zolghadri, Ali .
Journal Europeen des Systemes Automatises, 2012, 46 (4-5) :335-348
[27]   Robust and H∞ stabilisation of interconnected systems with delays [J].
Mahmoud, MS ;
Zribi, M .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06) :559-567
[28]   Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach [J].
Badri, Pouya ;
Sojoodi, Mahdi .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (09) :1718-1730
[29]   Local discontinuous Galerkin method for the Riesz space distributed-order Sobolev equation [J].
Fouladi, Somayeh ;
Mohammadi-Firouzjaei, Hadi .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 :38-47
[30]   The application of the distributed-order time fractional Bloch model to magnetic resonance imaging [J].
Yu, Qiang ;
Turner, Ian ;
Liu, Fawang ;
Vegh, Viktor .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 427