Robust stabilisation of distributed-order systems

被引:4
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
  • [21] Nonconservative LMI techniques for robust stabilisation of spatially interconnected systems
    Zhai, Xiaokai
    Xu, Huiling
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (01) : 126 - 140
  • [22] Stability of Fractional-order Population Growth Model Based on Distributed-order Approach
    Li Yan
    Chen YangQuan
    Zhai Lun
    [J]. 2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 2586 - 2591
  • [23] DISTRIBUTED-ORDER SPACE-TIME FRACTIONAL DIFFUSIONS IN BOUNDED DOMAINS
    Guerngar, Ngartelbaye
    Mccormick, James
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (10): : 2783 - 2799
  • [24] On the formulation and numerical simulation of distributed-order fractional optimal control problems
    Zaky, M. A.
    Tenreiro Machado, J. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 52 : 177 - 189
  • [25] Complete monotonicity of the relaxation moduli of distributed-order fractional Zener model
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    [J]. PROCEEDINGS OF THE 44TH INTERNATIONAL CONFERENCE "APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS", 2018, 2048
  • [26] Robust stabilisation of a class of uncertain nonlinear systems
    Stabilisation robuste d'une classe de systèmes non linéaires incertains
    [J]. Efimov, D. (denis.efimov@inria.fr), 1600, Lavoisier (46): : 335 - 348
  • [27] Robust and H∞ stabilisation of interconnected systems with delays
    Mahmoud, MS
    Zribi, M
    [J]. IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1998, 145 (06): : 559 - 567
  • [28] Calculation of Distributed-Order Fractional Derivative on Tensor Cores-Enabled GPU
    Bohaienko, Vsevolod
    [J]. INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2023, 51 (4-5) : 256 - 270
  • [29] Robust stabilisation of fractional-order interval systems via dynamic output feedback: an LMI approach
    Badri, Pouya
    Sojoodi, Mahdi
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (09) : 1718 - 1730
  • [30] Local discontinuous Galerkin method for the Riesz space distributed-order Sobolev equation
    Fouladi, Somayeh
    Mohammadi-Firouzjaei, Hadi
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 155 : 38 - 47