Robust stabilisation of distributed-order systems

被引:4
|
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
  • [11] Predefined-time control of distributed-order systems
    Munoz-Vazquez, Aldo Jonathan
    Fernandez-Anaya, Guillermo
    Sanchez-Torres, Juan Diego
    Melendez-Vazquez, Fidel
    NONLINEAR DYNAMICS, 2021, 103 (03) : 2689 - 2700
  • [12] Distributed-order fractional kinetics
    Sokolov, IM
    Chechkin, AV
    Klafter, J
    ACTA PHYSICA POLONICA B, 2004, 35 (04): : 1323 - 1341
  • [13] On a fractional distributed-order oscillator
    Atanackovic, TM
    Budincevic, M
    Pilipovic, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (30): : 6703 - 6713
  • [14] Lyapunov Stability of Fractional-order Nonlinear Systems: A Distributed-order Approach
    Li, Yan
    Chen, YangQuan
    2014 INTERNATIONAL CONFERENCE ON FRACTIONAL DIFFERENTIATION AND ITS APPLICATIONS (ICFDA), 2014,
  • [15] Vibration Systems with Fractional-Order and Distributed-Order Derivatives Characterizing Viscoinertia
    Duan, Jun-Sheng
    Hu, Di-Chen
    FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [16] Fractional order polytopic systems: robust stability and stabilisation
    Farges, Christophe
    Sabatier, Jocelyn
    Moze, Mathieu
    ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [17] Fractional order polytopic systems: robust stability and stabilisation
    Christophe Farges
    Jocelyn Sabatier
    Mathieu Moze
    Advances in Difference Equations, 2011
  • [18] Robust Stability Analysis of Distributed-Order Linear Time-Invariant Systems With Uncertain Order Weight Functions and Uncertain Dynamic Matrices
    Taghavian, Hamed
    Tavazoei, Mohammad Saleh
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (12):
  • [19] Stability Analysis of Linear Time-Invariant Distributed-Order Systems
    Jiao, Zhuang
    Chen, YangQuan
    Zhong, Yisheng
    ASIAN JOURNAL OF CONTROL, 2013, 15 (03) : 640 - 647
  • [20] A generalised distributed-order Maxwell model
    Ferras, Luis L.
    Morgado, M. Luisa
    Rebelo, Magda
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 368 - 387