Robust stabilisation of distributed-order systems

被引:4
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
[11]   Stability Analysis of Linear Time-Invariant Distributed-Order Systems [J].
Jiao, Zhuang ;
Chen, YangQuan ;
Zhong, Yisheng .
ASIAN JOURNAL OF CONTROL, 2013, 15 (03) :640-647
[12]   Fractional integro-differential sliding mode control of a class of distributed-order nonlinear systems [J].
Jonathan Munoz-Vazquez, Aldo ;
Fernandez-Anaya, Guillermo ;
Diego Sanchez-Torres, Juan .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (04) :2743-2760
[13]   Stabilization and passification of distributed-order fractional linear systems using methods of preservation [J].
Fernandez-Anaya, Guillermo ;
Flores-Godoy, Jose-Job ;
Lugo-Penaloza, Armando-Fabian ;
Munoz-Vega, Rodrigo .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10) :2881-2900
[14]   THEORY AND IMPLEMENTATION OF DISTRIBUTED-ORDER ELEMENT NETWORKS [J].
Li, Yan ;
Chen, YangQuan .
PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2011, VOL 3, PTS A AND B, 2012, :361-367
[15]   Applications of Distributed-Order Fractional Operators: A Review [J].
Ding, Wei ;
Patnaik, Sansit ;
Sidhardh, Sai ;
Semperlotti, Fabio .
ENTROPY, 2021, 23 (01) :1-42
[16]   Robust Mittag-Leffler stabilisation of fractional-order systems [J].
Jonathan Munoz-Vazquez, Aldo ;
Parra-Vega, Vicente ;
Sanchez-Orta, Anand ;
Martinez-Reyes, Fernando .
ASIAN JOURNAL OF CONTROL, 2020, 22 (06) :2273-2281
[17]   Fractional integro-differential sliding mode control of a class of distributed-order nonlinear systems [J].
Aldo Jonathan Muñoz-Vázquez ;
Guillermo Fernández-Anaya ;
Juan Diego Sánchez-Torres .
Journal of Applied Mathematics and Computing, 2022, 68 :2743-2760
[18]   Numerical solutions for fractional initial value problems of distributed-order [J].
Abdelkawy, M. A. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2021, 32 (07)
[19]   NEUTRON POINT KINETICS MODEL WITH A DISTRIBUTED-ORDER FRACTIONAL DERIVATIVE [J].
Godinez, F. A. ;
Fernandez-Anaya, G. ;
Quezada-Garcia, S. ;
Quezada-Tellez, L. A. ;
Polo-Labarrios, M. A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
[20]   Numerical approximation and fast implementation to a generalized distributed-order time-fractional model [J].
Zhang, Meihui ;
Jia, Jinhong ;
Zheng, Xiangcheng .
CHAOS SOLITONS & FRACTALS, 2023, 170