Robust stabilisation of distributed-order systems

被引:4
|
作者
Munoz-Vazquez, Aldo Jonathan [1 ]
Fernandez-Anaya, Guillermo [2 ]
Diego Sanchez-Torres, Juan [3 ]
Boulaaras, Salah [4 ]
机构
[1] Texas A&M Univ, Dept Multidisciplinary Engn, 6200 Tres Lagos Blvd, Mcallen, TX 78504 USA
[2] Univ Iberoamer, Dept Phys & Math, 880 Prol Paseo Reforma Primer Nivel, Mexico City 01219, DF, Mexico
[3] ITESO Univ, Dept Math & Phys, 8585 Anillo Perif Sur Manuel Gomez Morin, Tlaquepaque 45609, Jalisco, Mexico
[4] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass, Saudi Arabia
关键词
distributed-order systems; Lyapunov stability; robust stabilisation; STABILITY ANALYSIS; DIFFUSION; EQUATIONS;
D O I
10.1002/mma.8456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the design of a novel methodology for robust stabilisation of distributed-order systems, which are subject to both matched and mismatched disturbances. Matched disturbances are coped through a nonlinear controller, while mismatched disturbances are rejected by a pseudo-state feedback, whose gain is adjusted by solving alinear matrix inequality. Since nonsmooth techniques induce not-necessarily integer-order differentiable solutions, the dynamical systems under consideration are defined through an operator that extends the distributed-order differentiation of integer-order differentiable functions to the case of not necessarily integer-order differentiable ones. Numerical simulations highlight the reliability of the proposed scheme.
引用
收藏
页码:11390 / 11402
页数:13
相关论文
共 50 条
  • [1] Output feedback robust stabilization of distributed-order systems
    Munoz-Vazquez, Aldo Jonathan
    Eduardo Carvajal-Rubio, Jose
    Fernandez-Anaya, Guillermo
    Sanchez-Torres, Juan Diego
    ASIAN JOURNAL OF CONTROL, 2025,
  • [2] Stabilisation of distributed-order nonlinear systems via event-triggered control
    Li, Shijuan
    Song, Qiankun
    Liu, Yurong
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (06) : 1186 - 1195
  • [3] Stability Analysis of Distributed-Order Systems
    Rapaic, Milan R.
    Malti, Rachid
    Turkulov, Vukan
    Jelicic, Zoran D.
    Kapetina, Mirna
    Sekara, Tomislav B.
    IFAC PAPERSONLINE, 2024, 58 (12): : 336 - 340
  • [4] ON THE CONTROLLABILITY OF DISTRIBUTED-ORDER FRACTIONAL SYSTEMS WITH DISTRIBUTED DELAYS
    He, Bin-Bin
    Chen, YangQuan
    Kou, Chun-Hai
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2017, VOL 9, 2017,
  • [5] Stability Analysis of the Nabla Distributed-Order Nonlinear Systems
    Wang, Cuihong
    Zhu, Tianfen
    Chen, Yangquan
    FRACTAL AND FRACTIONAL, 2022, 6 (05)
  • [6] Stability Analysis of Distributed-Order Systems: a Lyapunov Scheme
    Badri, Vahid
    2021 29TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2021, : 618 - 621
  • [7] Predefined-time control of distributed-order systems
    Aldo Jonathan Muñoz-Vázquez
    Guillermo Fernández-Anaya
    Juan Diego Sánchez-Torres
    Fidel Meléndez-Vázquez
    Nonlinear Dynamics, 2021, 103 : 2689 - 2700
  • [8] Properties of the stability boundary in linear distributed-order systems
    Majma, Ehsan
    Tavazoei, Mohammad Saleh
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (10) : 1733 - 1743
  • [9] Pontryagin Maximum Principle for Distributed-Order Fractional Systems
    Ndairou, Faical
    Torres, Delfim F. M.
    MATHEMATICS, 2021, 9 (16)
  • [10] Stability analysis of distributed-order nonlinear dynamic systems
    Taghavian, Hamed
    Tavazoei, Mohammad Saleh
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2018, 49 (03) : 523 - 536