How to Transfer? Zero-Shot Object Recognition via Hierarchical Transfer of Semantic Attributes

被引:38
作者
Al-Halah, Ziad [1 ]
Stiefelhagen, Rainer [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Anthropomat & Robot, D-76021 Karlsruhe, Germany
来源
2015 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2015年
关键词
D O I
10.1109/WACV.2015.116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attribute based knowledge transfer has proven very successful in visual object analysis and learning previously unseen classes. However, the common approach learns and transfers attributes without taking into consideration the embedded structure between the categories in the source set. Such information provides important cues on the intra-attribute variations. We propose to capture these variations in a hierarchical model that expands the knowledge source with additional abstraction levels of attributes. We also provide a novel transfer approach that can choose the appropriate attributes to be shared with an unseen class. We evaluate our approach on three public datasets: aPascal, Animals with Attributes and CUB-200-2011 Birds. The experiments demonstrate the effectiveness of our model with significant improvement over state-of-the-art.
引用
收藏
页码:837 / 843
页数:7
相关论文
共 28 条
  • [1] Akata Z., 2013, P IEEE C COMP VIS PA
  • [2] [Anonymous], 2014, ECCV
  • [3] [Anonymous], 2007, ICCV
  • [4] [Anonymous], 2011, TECHNICAL REPORT
  • [5] [Anonymous], 2011, CVPR
  • [6] [Anonymous], 2009, CVPR
  • [7] [Anonymous], 2014, ECCV
  • [8] [Anonymous], CVPR
  • [9] [Anonymous], 2014, EUROPEAN C COMPUTER
  • [10] [Anonymous], T PAMI