Mechanical properties and thermal shock performance of W-Y2O3 composite prepared by high-energy-rate forging

被引:46
作者
Lian, Youyun [1 ]
Liu, Xiang [1 ]
Feng, Fan [1 ]
Song, Jiupeng [2 ]
Yang, Binyou [2 ]
Wang, Yingmin [3 ]
Wang, Jianbao [1 ]
Chen, Jiming [1 ]
机构
[1] Southwestern Inst Phys, Chengdu, Sichuan, Peoples R China
[2] Xiamen Tungsten Co Ltd, China Natl R&D Ctr Tungsten Technol, Xiamen, Peoples R China
[3] Dalian Univ Technol, Key Lab Mat Modificat Laser Ion & Electron Beams, Minist Educ, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
W-Y2O3; plasma facing material; high-energy-rate forging; tensile properties; thermal shock resistance; CENTERED-CUBIC METALS; PLASTIC ANISOTROPY; STRAIN-RATE; TUNGSTEN; TEMPERATURE; DEFORMATION; TRANSITION; BEHAVIOR;
D O I
10.1088/1402-4896/aa8f2d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GWm(-2) at various temperatures between room temperature and 200 degrees C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 degrees C.
引用
收藏
页数:7
相关论文
共 27 条
[1]   Microstructure and mechanical properties of a W-2wt.%Y2O3 composite produced by sintering and hot forging [J].
Battabyal, M. ;
Schaeublin, R. ;
Spaetig, P. ;
Walter, M. ;
Rieth, M. ;
Baluc, N. .
JOURNAL OF NUCLEAR MATERIALS, 2013, 442 (1-3) :S225-S228
[2]  
Davis J R, 1993, ASM HDB, V14
[3]   Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings [J].
Du, J. ;
Hoeschen, T. ;
Rasinski, M. ;
Wurster, S. ;
Grosinger, W. ;
You, J. -H. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (10) :1482-1489
[4]   Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces [J].
Du, J. ;
Hoeschen, T. ;
Rasinski, M. ;
You, J. -H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (06) :1623-1629
[5]   Plastic anisotropy in bcc transition metals [J].
Duesbery, MS ;
Vitek, V .
ACTA MATERIALIA, 1998, 46 (05) :1481-1492
[6]   Fracture toughness investigations of tungsten alloys and SPD tungsten alloys [J].
Faleschini, M. ;
Kreuzer, H. ;
Kiener, D. ;
Pippan, R. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 367 :800-805
[7]  
Faleschini M., 2006, FRACT NANO ENG MAT B, V2T15, P445, DOI [10.1007/1-4020-4972-2_220, DOI 10.1007/1-4020-4972-2_220]
[8]   On the potential of tungsten-vanadium composites for high temperature application with wide-range thermal operation window [J].
Hobe, Joerg ;
Gumbsch, Peter .
JOURNAL OF NUCLEAR MATERIALS, 2010, 400 (03) :218-231
[9]   Superplastic deformation in W-0.5 wt.% TiC with approximately 0.1 μm grain size [J].
Kurishita, H. ;
Matsuo, S. ;
Arakawa, H. ;
Kobayashi, S. ;
Nakai, K. ;
Takida, T. ;
Takebe, K. ;
Kawai, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 477 (1-2) :162-167
[10]   Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance [J].
Kurishita, H. ;
Matsuo, S. ;
Arakawa, H. ;
Sakamoto, T. ;
Kobayashi, S. ;
Nakai, K. ;
Takida, T. ;
Kato, M. ;
Kawai, M. ;
Yoshida, N. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 398 (1-3) :87-92