Global karst vegetation regime and its response to climate change and human activities

被引:44
|
作者
Zhao, Sen [1 ,2 ,3 ]
Pereira, Paulo [4 ]
Wu, Xiuqin [1 ,2 ,3 ]
Zhou, Jinxing [1 ,2 ,3 ]
Cao, Jianhua [5 ,6 ]
Zhang, Weixin [1 ,2 ,3 ]
机构
[1] Beijing Forestry Univ, Sch Soil & Water Conservat, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Key Lab Soil & Water Conservat, State Forestry Adm, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Sch Soil & Water Conservat, Jianshui Res Stn, Beijing 100083, Peoples R China
[4] Mykolas Romeris Univ, Environm Management Lab, Ate G 20, LT-08303 Vilnius, Lithuania
[5] Chinese Acad Geol Sci, Inst Karst Geol, Key Lab Karst Dynam, Minist Land & Resources & Sci & Technol,Dept Guan, Guilin 541004, Peoples R China
[6] UNESCO, Int Res Ctr Karst Auspices, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; First-order difference; Human footprint; Inter-annual variability; Karst vegetation; NDVI; ROCKY DESERTIFICATION; DRIVING FORCES; IMPACTS; CHINA; RESTORATION; PRODUCTIVITY; TEMPERATURE; REGIONS; COVER; WORLD;
D O I
10.1016/j.ecolind.2020.106208
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The vegetation in karst regions (KR) is crucial to maintain fragile local ecosystems. Therefore, it is critical to understand the factors that affect their vitality. The objective of this work is to study global KR vegetation dynamics between 1986 and 2015 and the natural and anthropogenic factors that affect it. The results showed a significantly (p < 0.05) positive greening trend (greening and browning trends were estimated to be 31.90% and 14.29%, respectively). The recuperation of KR vegetation was mainly observed at high latitudes and equatorial regions, where there is less human influence. Nevertheless, the growth of vegetation in some middle and low latitudes areas was a consequence of the human intervention. Vegetation degradation in KR was especially observed at middle latitudes due to the harsh environment and human impact. No significant correlation was observed between karst vegetation stability, the variation of annual average temperature and precipitation accumulated. Globally, karst vegetation dynamics depend more on precipitation than in temperature. In some areas, vegetation can recover gradually, even under extreme conditions and without human intervention. In areas with high population density, vegetation recuperation is mainly as a consequence of restoring programs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Vegetation cover change and its response to human activities in the southwestern karst region of China
    Liu, Zhaopu
    Zhang, Yushan
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2024, 12
  • [2] Nonlinear characteristics of the vegetation change and its response to climate change in the karst region of southwest China
    Zhang, Mingyang
    Deng, Zhenhua
    Yue, Yuemin
    Wang, Kelin
    Liu, Huiyu
    Zhang, Chunhua
    Qi, Xiangkun
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2022, 46 (04): : 497 - 514
  • [3] Vegetation change in response to climate factors and human activities on the Mongolian Plateau
    Meng, Meng
    Huang, Ni
    Wu, Mingquan
    Pei, Jie
    Wang, Jian
    Niu, Zheng
    PEERJ, 2019, 7
  • [4] HUMAN RIGHTS AND THE GLOBAL CLIMATE CHANGE REGIME
    Mboya, Atieno
    NATURAL RESOURCES JOURNAL, 2018, 58 (01) : 51 - 74
  • [5] Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China
    Wu, Luhua
    Wang, Shijie
    Bai, Xiaoyong
    Tian, Yichao
    Luo, Guangjie
    Wang, Jinfeng
    Li, Qin
    Chen, Fei
    Deng, Yuanhong
    Yang, Yujie
    Hu, Zeyin
    ECOLOGICAL INDICATORS, 2020, 115
  • [6] Runoff response to climate change and human activities in a typical karst watershed, SW China
    Xu, Yan
    Wang, Shijie
    Bai, Xiaoyong
    Shu, Dongcai
    Tian, Yichao
    PLOS ONE, 2018, 13 (03):
  • [7] Changes in Vegetation NDVI and Its Response to Climate Change and Human Activities in the Ferghana Basin from 1982 to 2015
    Zhang, Heli
    Li, Lu
    Zhao, Xiaoen
    Chen, Feng
    Wei, Jiachang
    Feng, Zhimin
    Hou, Tiyuan
    Chen, Youping
    Yue, Weipeng
    Shang, Huaming
    Wang, Shijie
    Hu, Mao
    REMOTE SENSING, 2024, 16 (07)
  • [8] Response of vegetation variation to climate change and human activities in semi-arid swamps
    Deng, Guangyi
    Gao, Jin
    Jiang, Haibo
    Li, Dehao
    Wang, Xue
    Wen, Yang
    Sheng, Lianxi
    He, Chunguang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [9] MODELING THE POTENTIAL RESPONSE OF VEGETATION TO GLOBAL CLIMATE-CHANGE
    SMITH, TM
    SHUGART, HH
    BONAN, GB
    SMITH, JB
    ADVANCES IN ECOLOGICAL RESEARCH, 1992, 22 : 93 - 116
  • [10] Vegetation Dynamics in Response to Climate Change and Human Activities in a Typical Alpine Region in the Tibetan Plateau
    Zhao, Guosong
    Ren, Lijie
    Ye, Zilong
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (19)