Global karst vegetation regime and its response to climate change and human activities

被引:49
作者
Zhao, Sen [1 ,2 ,3 ]
Pereira, Paulo [4 ]
Wu, Xiuqin [1 ,2 ,3 ]
Zhou, Jinxing [1 ,2 ,3 ]
Cao, Jianhua [5 ,6 ]
Zhang, Weixin [1 ,2 ,3 ]
机构
[1] Beijing Forestry Univ, Sch Soil & Water Conservat, Beijing 100083, Peoples R China
[2] Beijing Forestry Univ, Key Lab Soil & Water Conservat, State Forestry Adm, Beijing 100083, Peoples R China
[3] Beijing Forestry Univ, Sch Soil & Water Conservat, Jianshui Res Stn, Beijing 100083, Peoples R China
[4] Mykolas Romeris Univ, Environm Management Lab, Ate G 20, LT-08303 Vilnius, Lithuania
[5] Chinese Acad Geol Sci, Inst Karst Geol, Key Lab Karst Dynam, Minist Land & Resources & Sci & Technol,Dept Guan, Guilin 541004, Peoples R China
[6] UNESCO, Int Res Ctr Karst Auspices, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; First-order difference; Human footprint; Inter-annual variability; Karst vegetation; NDVI; ROCKY DESERTIFICATION; DRIVING FORCES; IMPACTS; CHINA; RESTORATION; PRODUCTIVITY; TEMPERATURE; REGIONS; COVER; WORLD;
D O I
10.1016/j.ecolind.2020.106208
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
The vegetation in karst regions (KR) is crucial to maintain fragile local ecosystems. Therefore, it is critical to understand the factors that affect their vitality. The objective of this work is to study global KR vegetation dynamics between 1986 and 2015 and the natural and anthropogenic factors that affect it. The results showed a significantly (p < 0.05) positive greening trend (greening and browning trends were estimated to be 31.90% and 14.29%, respectively). The recuperation of KR vegetation was mainly observed at high latitudes and equatorial regions, where there is less human influence. Nevertheless, the growth of vegetation in some middle and low latitudes areas was a consequence of the human intervention. Vegetation degradation in KR was especially observed at middle latitudes due to the harsh environment and human impact. No significant correlation was observed between karst vegetation stability, the variation of annual average temperature and precipitation accumulated. Globally, karst vegetation dynamics depend more on precipitation than in temperature. In some areas, vegetation can recover gradually, even under extreme conditions and without human intervention. In areas with high population density, vegetation recuperation is mainly as a consequence of restoring programs.
引用
收藏
页数:11
相关论文
共 65 条
[1]   Does It Pay to Be Green? A Systematic Overview [J].
Ambec, Stefan ;
Lanoie, Paul .
ACADEMY OF MANAGEMENT PERSPECTIVES, 2008, 23 (04) :45-62
[2]  
[Anonymous], ACH LAND DEGR NEUTR
[3]  
[Anonymous], NATURE
[4]  
[Anonymous], GLOB LAND OUTL 2017
[5]  
Arneth A, 2010, NAT GEOSCI, V3, P525, DOI [10.1038/ngeo905, 10.1038/NGEO905]
[6]   Karst groundwater: a challenge for new resources [J].
Bakalowicz, M .
HYDROGEOLOGY JOURNAL, 2005, 13 (01) :148-160
[7]   Present and future Koppen-Geiger climate classification maps at 1-km resolution [J].
Beck, Hylke E. ;
Zimmermann, Niklaus E. ;
McVicar, Tim R. ;
Vergopolan, Noemi ;
Berg, Alexis ;
Wood, Eric F. .
SCIENTIFIC DATA, 2018, 5
[8]   Change in future climate due to Antarctic meltwater [J].
Bronselaer, Ben ;
Winton, Michael ;
Griffies, Stephen M. ;
Hurlin, William J. ;
Rodgers, Keith B. ;
Sergienko, Olga V. ;
Stouffer, Ronald J. ;
Russell, Joellen L. .
NATURE, 2018, 564 (7734) :53-+
[9]   Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND) [J].
Burrell, Arden L. ;
Evans, Jason P. ;
Liu, Yi .
REMOTE SENSING OF ENVIRONMENT, 2017, 197 :43-57
[10]   China and India lead in greening of the world through land-use management [J].
Chen, Chi ;
Park, Taejin ;
Wang, Xuhui ;
Piao, Shilong ;
Xu, Baodong ;
Chaturvedi, Rajiv K. ;
Fuchs, Richard ;
Brovkin, Victor ;
Ciais, Philippe ;
Fensholt, Rasmus ;
Tommervik, Hans ;
Bala, Govindasamy ;
Zhu, Zaichun ;
Nemani, Ramakrishna R. ;
Myneni, Ranga B. .
NATURE SUSTAINABILITY, 2019, 2 (02) :122-129