Bilinear Models for Machine Learning

被引:1
作者
Doghri, Tayssir [1 ]
Szczecinski, Leszek [1 ]
Benesty, Jacob [1 ]
Mitiche, Amar [1 ]
机构
[1] Inst Natl Rech Sci, 800 Gauchetiere Ouest,Suite 6900, Montreal, PQ H5A 1K6, Canada
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I | 2020年 / 12396卷
关键词
Classification; Bilinear forms; Machine learning;
D O I
10.1007/978-3-030-61609-0_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we define and analyze the bilinear models which replace the conventional linear operation used in many building blocks of machine learning (ML). The main idea is to devise the ML algorithms which are adapted to the objects they treat. In the case of monochromatic images, we show that the bilinear operation exploits better the structure of the image than the conventional linear operation which ignores the spatial relationship between the pixels. This translates into significantly smaller number of parameters required to yield the same performance. We show numerical examples of classification in the MNIST data set.
引用
收藏
页码:687 / 698
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 2012, Bayesian reasoning and machine learning, DOI DOI 10.1017/CBO9780511804779
[2]  
[Anonymous], 2009, P 18 INT C WORLD WID, DOI [DOI 10.1145/1526709.1526802, 10.1145/1526709.1526802, 10.1145/1526709, DOI 10.1145/1526709]
[3]   On the Identification of Bilinear Forms With the Wiener Filter [J].
Benesty, Jacob ;
Paleologu, Constantin ;
Ciochina, Silviu .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (05) :653-657
[4]  
Bishop CM., 2006, Pattern Recognition and Machine Learning
[5]   System Identification Based on Tensor Decompositions: A Trilinear Approach [J].
Dogariu, Laura-Maria ;
Ciochina, Silviu ;
Benesty, Jacob ;
Paleologu, Constantin .
SYMMETRY-BASEL, 2019, 11 (04)
[6]  
Dyrholm M, 2007, J MACH LEARN RES, V8, P1097
[7]  
Hastie T., 2009, ELEMENTS STAT LEARNI
[8]   Matrix variate logistic regression model with application to EEG data [J].
Hung, Hung ;
Wang, Chen-Chien .
BIOSTATISTICS, 2013, 14 (01) :189-202
[9]  
LeCun Y., 2010, MNIST handwritten digit database, V2
[10]  
Pirsiavash H., 2009, P 22 INT C NEUR INF, P1482