Double butterfly spectrum for two interacting particles in the Harper model

被引:36
作者
Barelli, A [1 ]
Bellissard, J [1 ]
Jacquod, P [1 ]
Shepelyansky, DL [1 ]
机构
[1] UNIV NEUCHATEL,INST PHYS,CH-2000 NEUCHATEL,SWITZERLAND
关键词
D O I
10.1103/PhysRevLett.77.4752
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the effect of interparticle interaction U on the spectrum of the Harper model and show that it leads to a pure-point component arising from the multifractal spectrum of the noninteracting problem. Our numerical studies allow us to understand the global structure of the spectrum. An analytical approach developed permits us to understand the origin of localized states in the limit of strong interaction U and fine spectral structure for small U.
引用
收藏
页码:4752 / 4755
页数:4
相关论文
共 29 条
[1]   PHASE-DIAGRAM IN THE KICKED HARPER MODEL [J].
ARTUSO, R ;
BORGONOVI, F ;
GUARNERI, I ;
REBUZZINI, L ;
CASATI, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (23) :3302-3305
[2]   FRACTAL AND DYNAMICAL PROPERTIES OF THE KICKED HARPER MODEL [J].
ARTUSO, R ;
CASATI, G ;
BORGONOVI, F ;
REBUZZINI, L ;
GUARNERI, I .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1994, 8 (03) :207-235
[3]  
Aubry S., 1980, Annals of the Israel Physical Society, V3, P133
[4]   SEMICLASSICAL ANALYSIS OF HARPER-LIKE MODELS [J].
BARELLI, A ;
FLECKINGER, R .
PHYSICAL REVIEW B, 1992, 46 (18) :11559-11569
[5]  
BARELLI A, IN PRESS PHYS REV B
[6]  
BELLISSARD J, 1992, QUANTUM CHAOS QUANTU
[7]  
Bellissard J, 1988, OPERATOR ALGEBRAS AP, VII
[8]   METAMORPHOSIS OF A CANTOR SPECTRUM DUE TO CLASSICAL CHAOS [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 67 (26) :3635-3638
[9]   NEW CLASS OF LEVEL STATISTICS IN QUANTUM-SYSTEMS WITH UNBOUNDED DIFFUSION [J].
GEISEL, T ;
KETZMERICK, R ;
PETSCHEL, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (13) :1651-1654
[10]  
GEISEL T, 1992, PHYS REV LETT, V69, P695