Parameters identification of photovoltaic models using niche-based particle swarm optimization in parallel computing architecture

被引:78
作者
Lin, Xiankun [1 ]
Wu, Yuhang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mech Engn, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Photovoltaic models; Parallel computing; Niched particle swarm optimization; Parameter identification; ARTIFICIAL BEE COLONY; I-V CHARACTERISTICS; SOLAR; ALGORITHM; CELL; EXTRACTION;
D O I
10.1016/j.energy.2020.117054
中图分类号
O414.1 [热力学];
学科分类号
摘要
Determined parameters for photovoltaic (PV) model is of great practical significance in prediction of output power in PV array and tracing its maximum power point. An optimization algorithm based on niche particle swarm optimization in parallel computing (NPSOPC) is proposed to identify the parameters of PV model. A diode equivalent circuit model is applied to simulate the output characteristics of PV model. On the support of the output current-voltage data of PV model, the parameters identification is transformed to be a multivariate, nonlinear mathematical optimization problem. A mathematical model with objective optimization function is established to quantify the discrepancy between the current experimental data and the simulation data. A particle swarm optimization algorithm based parameters extraction model is established with niches in parallel architecture to improve the extraction performance. Contrast experiments of these three models are carried out in the different condition with different light intensity and temperatures to verify the good performance of the proposed approach. The results indicate that the proposed algorithm can be utilized as an accurate, reliable and promising alternative approach for parameters acquisition in single diode model, double diode model and PV module model. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:10
相关论文
共 35 条
[1]   Flower Pollination Algorithm based solar PV parameter estimation [J].
Alam, D. F. ;
Yousri, D. A. ;
Eteiba, M. B. .
ENERGY CONVERSION AND MANAGEMENT, 2015, 101 :410-422
[2]   Optimal extraction of solar cell parameters using pattern search [J].
AlHajri, M. F. ;
El-Naggar, K. M. ;
AlRashidi, M. R. ;
Al-Othman, A. K. .
RENEWABLE ENERGY, 2012, 44 :238-245
[3]   A new estimation approach for determining the I-V characteristics of solar cells [J].
AlRashidi, M. R. ;
AlHajri, M. F. ;
El-Naggar, K. M. ;
Al-Othman, A. K. .
SOLAR ENERGY, 2011, 85 (07) :1543-1550
[4]  
[Anonymous], 2016, Int J Ind Eng Comput, DOI DOI 10.5267/J.IJIEC.2015.8.004
[5]  
Askarzadeh A, 2015, ENERGIES, V8, P7563
[6]   Artificial bee swarm optimization algorithm for parameters identification of solar cell models [J].
Askarzadeh, Alireza ;
Rezazadeh, Alireza .
APPLIED ENERGY, 2013, 102 :943-949
[7]   CXCL10/CXCR3 overexpression as a biomarker of poor prognosis in patients with stage II colorectal cancer [J].
Bai, Ming ;
Chen, Xia ;
Ba, Yi .
MOLECULAR AND CLINICAL ONCOLOGY, 2016, 4 (01) :23-30
[8]   Discrete particle swarm optimisation for ontology alignment [J].
Bock, Juergen ;
Hettenhausen, Jan .
INFORMATION SCIENCES, 2012, 192 :152-173
[9]   Learning backtracking search optimisation algorithm and its application [J].
Chen, Debao ;
Zou, Feng ;
Lu, Renquan ;
Wang, Peng .
INFORMATION SCIENCES, 2017, 376 :71-94
[10]   Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation [J].
Chen, Xu ;
Xu, Bin ;
Mei, Congli ;
Ding, Yuhan ;
Li, Kangji .
APPLIED ENERGY, 2018, 212 :1578-1588