The global attractivity of the rational difference equation yn=A+(yn-k/yn-m)p

被引:19
作者
Berenhaut, Kenneth S. [1 ]
Foley, John D.
Stevic, Stevo
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
[2] Serbian Acad Sci, Inst Math, Belgrade 11000, Serbia
关键词
rational difference equation; stability;
D O I
10.1090/S0002-9939-07-08860-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the behavior of positive solutions of the recursive equation y(n) = A + (y(n)-k/y(n)-m)(p) , n = 0,1,2,..., with y(-s), y(-s)+1,..., y(-1) is an element of (0,infinity) and k, m is an element of {1, 2, 3, 4,...}, where s = max{k, m}. We prove that if gcd( k, m) = 1, and p <= min{1, (A + 1)/2}, then y(n) tends to A + 1. This complements several results in the recent literature, including the main result in K. S. Berenhaut, J. D. Foley and S. Stevic, The global attractivity of the rational difference equation y(n) = 1 + y(n)-k/y(n)-m.
引用
收藏
页码:103 / 110
页数:8
相关论文
共 25 条
[1]   Global stability of yn+1=A+yn/yn-k [J].
Abu-Saris, RM ;
DeVault, R .
APPLIED MATHEMATICS LETTERS, 2003, 16 (02) :173-178
[2]   On the recursive sequence xn+1=α+xn-1/xn [J].
Amleh, AM ;
Grove, EA ;
Ladas, G ;
Georgiou, DA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 233 (02) :790-798
[3]  
[Anonymous], 2002, COLLOQ MATH-WARSAW, DOI [DOI 10.4064/CM93-2-6, 10.4064/cm93-2-6]
[4]  
[Anonymous], 1968, ASYMPTOTISCHE DARSTE
[5]  
[Anonymous], 1993, MATH ITS APPL
[6]   The global attractivity of the rational difference equation [J].
Berenhaut, Kenneth S. ;
Foley, John D. ;
Stevic, Stevo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (04) :1133-1140
[7]   A note on positive non-oscillatory solutions of the difference equation xn+1 = α + xpn-k xpn [J].
Berenhaut, Kenneth S. ;
Stevic, Stevo .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (05) :495-499
[8]   A note on the difference equation [J].
Berenhaut, KS ;
Stevic, S .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (14) :1225-1228
[9]   Inclusion theorems for non-linear difference equations with applications [J].
Berg, L .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (04) :399-408
[10]   Inclusion theorems for non-linear difference equations with applications (vol 10, pg 399, 2004) [J].
Berg, L .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (02) :181-182