Dynamics of a Lorenz-type multistable hyperchaotic system

被引:10
作者
Chen, Yu-Ming [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
coexistence; dynamic at infinity; hyperchaos; Lorenz-type system; multistability; singular degenerate heteroclinic cycle; DUFFING OSCILLATOR; CHAOTIC SYSTEM; ATTRACTORS;
D O I
10.1002/mma.5171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Little seems to be known about the multistable hyperchaotic systems. In this paper, based on the classical Lorenz system, a new Lorenz-type hyperchaotic system with a curve of equilibria is proposed. Firstly, the local stability of the curve of equilibria is studied, based on this, infinity many singular degenerate heteroclinic cycles are proved numerically coexisting in the phase space of this hyperchaotic system. Secondly, the discovery of lots of coexisting behaviors mean that this hyperchaotic system possess multistability, such as (i) chaotic attractor and periodic attractor, (ii) different periodic attractors, (iii) chaotic attractor and singular degenerate heteroclinic cycle, and (iv) periodic attractor and singular degenerate heteroclinic cycle. Thirdly, in order to study the global dynamical behavior, the technique of Poincare compactification is used to investigate the dynamics at infinity of this hyperchaotic system.
引用
收藏
页码:6480 / 6491
页数:12
相关论文
共 25 条
[11]  
2
[12]   How dead ends undermine power grid stability [J].
Menck, Peter J. ;
Heitzig, Jobst ;
Kurths, Juergen ;
Schellnhuber, Hans Joachim .
NATURE COMMUNICATIONS, 2014, 5
[13]   Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system [J].
Messias, Marcelo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (11)
[14]   Nonsymmetric Lorenz attractors from homoclinic bifurcation [J].
Robinson, C .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 32 (01) :119-141
[15]   Catastrophic shifts in ecosystems [J].
Scheffer, M ;
Carpenter, S ;
Foley, JA ;
Folke, C ;
Walker, B .
NATURE, 2001, 413 (6856) :591-596
[16]  
Scheffer M., 2009, CRITICAL TRANSITIONS
[17]   CONTROLLING CHAOS IN THE BRAIN [J].
SCHIFF, SJ ;
JERGER, K ;
DUONG, DH ;
CHANG, T ;
SPANO, ML ;
DITTO, WL .
NATURE, 1994, 370 (6491) :615-620
[18]   The nature of attractor basins in multistable systems [J].
Shrimali, Manish Dev ;
Prasad, Awadhesh ;
Ramaswamy, Ram ;
Feudel, Ulrike .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06) :1675-1688
[19]  
Sparrow C., 1982, LORENZ EQUATIONS BIF, V41
[20]   Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information [J].
Udaltsov, VS ;
Goedgebuer, JP ;
Larger, L ;
Cuenot, JB ;
Levy, P ;
Rhodes, WT .
OPTICS AND SPECTROSCOPY, 2003, 95 (01) :114-118