Real-time motion control of robotic manipulators for safe human-robot coexistence

被引:43
|
作者
Merckaert, Kelly [1 ,2 ]
Convens, Bryan [1 ,3 ]
Wu, Chi-ju [4 ]
Roncone, Alessandro [4 ]
Nicotra, Marco M. [5 ]
Vanderborght, Bram [1 ,3 ]
机构
[1] Vrije Univ Brussel, Dept Mech Engn, Robot & Multibody Mech R&MM, Brussels, Belgium
[2] Flanders Make, Leuven, Belgium
[3] IMEC, Leuven, Belgium
[4] Univ Colorado, Dept Comp Sci, Human Interact & RObot HIRO, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Elect Comp & Energy Engn, Robot Optimizat & Constrained Control ROCC, Boulder, CO 80309 USA
关键词
Human-robot collaboration; Collision avoidance; Constrained control; Robot arm; MODEL-PREDICTIVE CONTROL; COLLISION-AVOIDANCE; OPTIMIZATION; DESIGN; SPEED;
D O I
10.1016/j.rcim.2021.102223
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces a computationally efficient control scheme for safe human-robot interaction. The method relies on the Explicit Reference Governor (ERG) formalism to enforce input and state constraints in real-time, thus ensuring that the robot can safely operate in close proximity to humans. The resulting constrained control method can steer the robot arm to the desired end-effector pose (or a steady-state admissible approximation thereof) in the presence of actuator saturation, limited joint ranges, speed limits, static obstacles, and humans. The effectiveness of the proposed solution is supported by theoretical results and numerous experimental validations on the Franka Emika Panda robotic manipulator, a commercially available collaborative 7-DOF robot arm.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Effects of Robot Motion on Human-Robot Collaboration
    Dragan, Anca D.
    Bauman, Shira
    Forlizzi, Jodi
    Srinivasa, Siddhartha S.
    PROCEEDINGS OF THE 2015 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'15), 2015, : 51 - 58
  • [42] Neural Control for Human-Robot Interaction with Human Motion Intention Estimation
    Peng, Guangzhu
    Yang, Chenguang
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2024, 71 (12) : 16317 - 16326
  • [43] Evolutionary Motion Control Optimization in Physical Human-Robot Interaction
    Nadeau, Nicholas A.
    Bonev, Ilian A.
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1347 - 1353
  • [44] Motion Retargeting and Control for Teleoperated Physical Human-Robot Interaction
    Kaplish, Akshit
    Yamane, Katsu
    2019 IEEE-RAS 19TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2019, : 723 - 730
  • [45] Force tracking control for motion synchronization in human-robot collaboration
    Li, Yanan
    Ge, Shuzhi Sam
    ROBOTICA, 2016, 34 (06) : 1260 - 1281
  • [46] Real-Time Predictive Control of an UR5 Robotic Arm Through Human Upper Limb Motion Tracking
    Omarali, Bukeikhan
    Taunyazov, Tasbolat
    Bukeyev, Askhat
    Shintemirov, Almas
    COMPANION OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 414 - 414
  • [47] FaSTrack:A Modular Framework for Real-Time Motion Planning and Guaranteed Safe Tracking
    Chen, Mo
    Herbert, Sylvia L.
    Hu, Haimin
    Pu, Ye
    Fisac, Jaime Fernandez
    Bansal, Somil
    Han, SooJean
    Tomlin, Claire J.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 5861 - 5876
  • [48] Real-Time Predictive Control of an UR5 Robotic Arm Through Human Upper Limb Motion Tracking
    Omarali, Bukeikhan
    Taunyazov, Tasbolat
    Bukeyev, Askhat
    Shintemirov, Almas
    COMPANION OF THE 2017 ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION (HRI'17), 2017, : 237 - 238
  • [49] A Novel Constrained Trajectory Planner for Safe Human-robot Collaboration
    Melchiorre, Matteo
    Scimmi, Leonardo Sabatino
    Mauro, Stefano
    Pastorelli, Stefano
    PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO), 2022, : 539 - 548
  • [50] Human motion prediction for human-robot collaboration
    Liu, Hongyi
    Wang, Lihui
    JOURNAL OF MANUFACTURING SYSTEMS, 2017, 44 : 287 - 294