Porous Structured Ni-Fe-P Nanocubes Derived from a Prussian Blue Analogue as an Electrocatalyst for Efficient Overall Water Splitting

被引:241
作者
Xuan, Cuijuan [1 ]
Wang, Jie [1 ]
Xia, Weiwei [2 ,3 ]
Peng, Zongkai [1 ]
Wu, Zexing [1 ]
Lei, Wen [1 ]
Xia, Kedong [1 ]
Xin, Huolin L. [2 ]
Wang, Deli [1 ]
机构
[1] Huazhong Univ Sci & Technol, Key Lab Mat Chem Energy Convers & Storage, Hubei Key Lab Mat Chem & Serv Failure, Minist Educ,Sch Chem & Chem Engn, Wuhan 430073, Hubei, Peoples R China
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Southeast Univ, Minist Educ, Key Lab MEMS, SEU FEI Nanopico Ctr, Nanjing 210096, Jiangsu, Peoples R China
关键词
ternary Ni-Fe-P nanocube; porous structure; metal-organic frameworks; Prussian blue analogue; overall water splitting; HYDROGEN EVOLUTION REACTION; METAL-ORGANIC-FRAMEWORKS; HIGH CATALYTIC-ACTIVITY; OXYGEN EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; PHOSPHIDE NANORODS; NANOPOROUS CARBONS; NANOPARTICLES; OXIDATION; REDUCTION;
D O I
10.1021/acsami.7b08560
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Exploring nonprecious metal electrocatalysts to replace the noble metal based catalysts for full water electrocatalysis is still an ongoing challenge. In this work, porous structured ternary nickel-iron-phosphide (Ni-Fe-P) nanocubes were synthesized through one-step phosphidation of a Ni-Fe-based Prussian blue analogue. The Ni-Fe-P nanocubes exhibit a rough and loose porous structure on their surface under suitable phosphating temperature, which is favorable for the mass transfer and oxygen diffusion during the electrocatalysis process. As a result, Ni-Fe-P obtained at 350 degrees C with poorer crystallinity offers more unsaturated atoms as active sites to expedite the absorption of reactants. Additionally, the introduction of nickel improved the electronic structure and then reduced the charge-transfer resistance, which would result in a faster electron transport and an enhancement of the intrinsic electrocatalytic activities. Benefiting from the unique porous nanocubes and the chemical composition, the Ni-Fe-P nanocubes exhibit excellent hydrogen evolution reaction and oxygen evolution reaction activities in alkaline medium, with low overpotentials of 182 and 271 mV for delivering a current density of 10 mA cm(-2), respectively. Moreover, the Ni-Fe-P nanocubes show outstanding stability for sustained water splitting in the two-electrode alkaline electrolyzer. This work not only provides a facile approach for designing bifunctional electrocatalysts but also further extends the application of metal-organic frameworks in overall water splitting.
引用
收藏
页码:26134 / 26142
页数:9
相关论文
共 58 条
[1]   Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review [J].
Anantharaj, Sengeni ;
Ede, Sivasankara Rao ;
Sakthikumar, Kuppan ;
Karthick, Kannimuthu ;
Mishra, Soumyaranjan ;
Kundu, Subrata .
ACS CATALYSIS, 2016, 6 (12) :8069-8097
[2]  
[Anonymous], 2015, ANGEW CHEM
[3]   Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage [J].
Bai, Yuanjuan ;
Zhang, Huijuan ;
Li, Xiao ;
Liu, Li ;
Xu, Haitao ;
Qiu, Huajun ;
Wang, Yu .
NANOSCALE, 2015, 7 (04) :1446-1453
[4]   Surface Oxidized Cobalt-Phosphide Nanorods As an Advanced Oxygen Evolution Catalyst in Alkaline Solution [J].
Chang, Jinfa ;
Xiao, Yao ;
Xiao, Meiling ;
Ge, Junjie ;
Liu, Changpeng ;
Xing, Wei .
ACS Catalysis, 2015, 5 (11) :6874-6878
[5]   Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts [J].
Chen, Wei-Fu ;
Muckerman, James T. ;
Fujita, Etsuko .
CHEMICAL COMMUNICATIONS, 2013, 49 (79) :8896-8909
[6]   NiFe-Based (Oxy)hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes [J].
Dionigi, Fabio ;
Strasser, Peter .
ADVANCED ENERGY MATERIALS, 2016, 6 (23)
[7]   Developments of Metal Phosphides as Efficient OER Precatalysts [J].
Dutta, Anirban ;
Pradhan, Narayan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :144-152
[8]   Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting [J].
Friebel, Daniel ;
Louie, Mary W. ;
Bajdich, Michal ;
Sanwald, Kai E. ;
Cai, Yun ;
Wise, Anna M. ;
Cheng, Mu-Jeng ;
Sokaras, Dimosthenis ;
Weng, Tsu-Chien ;
Alonso-Mori, Roberto ;
Davis, Ryan C. ;
Bargar, John R. ;
Norskov, Jens K. ;
Nilsson, Anders ;
Bell, Alexis T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) :1305-1313
[9]   A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts [J].
Gong, Ming ;
Dai, Hongjie .
NANO RESEARCH, 2015, 8 (01) :23-39
[10]   Co-Mo-B Nanoparticles as a non-precious and efficient Bifunctional Electrocatalyst for Hydrogen and Oxygen Evolution [J].
Gupta, S. ;
Patel, N. ;
Fernandes, R. ;
Hanchate, S. ;
Miotello, A. ;
Kothari, D. C. .
ELECTROCHIMICA ACTA, 2017, 232 :64-71