Relevant Attributes in Formal Contexts

被引:7
作者
Hanika, Tom [1 ,2 ]
Koyda, Maren [1 ,2 ]
Stumme, Gerd [1 ,2 ]
机构
[1] Univ Kassel, Knowledge & Data Engn Grp, Kassel, Germany
[2] Univ Kassel, Interdisciplinary Res Ctr Informat Syst Design, Kassel, Germany
来源
GRAPH-BASED REPRESENTATION AND REASONING (ICCS 2019) | 2019年 / 11530卷
关键词
Formal concept analysis; Relevant features; Attribute selection; Entropy; Label function; SELECTION;
D O I
10.1007/978-3-030-23182-8_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Computing conceptual structures, like formal concept lattices, is a challenging task in the age of massive data sets. There are various approaches to deal with this, e.g., random sampling, parallelization, or attribute extraction. A so far not investigated method in the realm of formal concept analysis is attribute selection, as done in machine learning. Building up on this we introduce a method for attribute selection in formal contexts. To this end, we propose the notion of relevant attributes which enables us to define a relative relevance function, reflecting both the order structure of the concept lattice as well as distribution of objects on it. Finally, we overcome computational challenges for computing the relative relevance through an approximation approach based on information entropy.
引用
收藏
页码:102 / 116
页数:15
相关论文
共 21 条
[1]  
[Anonymous], 1994, Irrelevant Features and the Subset Selection Problem. pages, DOI 10.1016/B978-1-55860-335-6.50023-4
[2]   The social bookmark and publication management system bibsonomy A platform for evaluating and demonstrating Web 2.0 research [J].
Benz, Dominik ;
Hotho, Andreas ;
Jaeschke, Robert ;
Krause, Beate ;
Mitzlaff, Folke ;
Schmitz, Christoph ;
Stumme, Gerd .
VLDB JOURNAL, 2010, 19 (06) :849-875
[3]   Selection of relevant features and examples in machine learning [J].
Blum, AL ;
Langley, P .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :245-271
[4]  
Boley M., 2010, P 10 SIAM INT C DATA, P177, DOI DOI 10.1137/1.9781611972801.16
[5]  
Borchmann D., 2016, CLA CEUR WORKSHOP P, V1624, P57
[6]   A graph distance metric based on the maximal common subgraph [J].
Bunke, H ;
Shearer, K .
PATTERN RECOGNITION LETTERS, 1998, 19 (3-4) :255-259
[7]   On the complexity of enumerating pseudo-intents [J].
Distel, Felix ;
Sertkaya, Baris .
DISCRETE APPLIED MATHEMATICS, 2011, 159 (06) :450-466
[8]  
Dua D., 2017, Uci machine learning repository
[9]   Research on collaborative negotiation for e-commerce. [J].
Feng, YQ ;
Lei, Y ;
Li, Y ;
Cao, RZ .
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, :2085-2088
[10]  
Ganter B., 2012, Formal Concept Analysis: Mathematical Foundations, DOI [10.1007/978-3-642-59830-2, DOI 10.1007/978-3-642-59830-2]