Advances in automatic detection of failures in electric machines using audio signals

被引:0
|
作者
Henriquez, Patricia [1 ]
Alonso, Jesus B. [1 ]
Travieso, Carlos M. [1 ]
Ferrer, Miguel A. [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Signals & Commun, Technol Ctr Innovat Commun CeTIC, Las Palmas Gran Canaria 35017, Spain
来源
PROCEDINGS OF THE 11TH IASTED INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING | 2007年
关键词
chaos; Lyapunov exponents; correlation dimension; correlation entropy and expert systems;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
in this paper nonlinear chaotic features have been obtained from audio signals of different kinds of electric machines as a first step in order to develop a personal computer (PC) based artificial intelligence system for the fault identification and diagnosis of electric machines. These techniques can be applied in fault identification and diagnosis in industrial scenarios by mean of expert systems. Different nonlinear features (based on chaos theory) to detect changes of the audio signal were studied: maximal Lyapunov exponent, correlation dimension and correlation entropy. We also studied related measurement such as the time delay and the value of the first minimum of the mutual information function, the first zero of the autocorrelation function and Shannon entropy. We used different recordings from different scenarios (PC fans, an iron cutter and an electric drill).
引用
收藏
页码:114 / 119
页数:6
相关论文
共 12 条
  • [1] Review of Automatic Fault Diagnosis Systems Using Audio and Vibration Signals
    Henriquez, Patricia
    Alonso, Jesus B.
    Ferrer, Miguel A.
    Travieso, Carlos M.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2014, 44 (05): : 642 - 652
  • [2] AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS
    Acharya, U. Rajendra
    Chua, Chua Kuang
    Lim, Teik-Cheng
    Dorithy
    Suri, Jasjit S.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2009, 9 (04) : 539 - 553
  • [3] Detection of weak LFM signals using a chaotic oscillator
    Le, B
    Liu, Z
    Gu, TX
    PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM ON INSTRUMENTATION SCIENCE AND TECHNOLOGY, VOL 2, 2004, : 403 - 407
  • [4] A highly robust deep learning technique for overlap detection using audio fingerprinting
    Uikey, Akash
    Bedi, Anterpreet Kaur
    Choudhary, Priyankar
    Ooi, Wei Tsang
    Saini, Mukesh
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (10) : 29119 - 29137
  • [5] Automatic Detection of Pathological Voices Using Complexity Measures, Noise Parameters, and Mel-Cepstral Coefficients
    Arias-Londono, Julian D.
    Godino-Llorente, Juan I.
    Saenz-Lechon, Nicolas
    Osma-Ruiz, Victor
    Castellanos-Dominguez, German
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (02) : 370 - 379
  • [6] Nonlinear dynamics techniques for the detection of the brain areas using MER signals
    Rodriguez-Sanchez, Andrea
    Delgado-Trejos, Edilson
    Orozco-Gutierrez, Advaro
    Castellanos-Dominguez, German
    Guijarro-Estelles, Enrique
    BMEI 2008: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS, VOL 2, 2008, : 198 - +
  • [7] Weak Harmonic Signal Detection in Chaos Using Least Squares Support Vector Machines
    Ye Meiying
    Wang Xiaodong
    ISTM/2009: 8TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-6, 2009, : 3085 - 3088
  • [8] The capability of weak signals detection using chaos system initial condition sensitivity
    Wang Yongsheng
    Zhao Jianjun
    Wang Yi
    Li Dedong
    ISTM/2007: 7TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-7, CONFERENCE PROCEEDINGS, 2007, : 3905 - 3909
  • [9] Automated detection of sleep apnea from electrocardiogram signals using nonlinear parameters
    Acharya, U. Rajendra
    Chua, Eric Chern-Pin
    Faust, Oliver
    Lim, Teik-Cheng
    Lim, Liang Feng Benjamin
    PHYSIOLOGICAL MEASUREMENT, 2011, 32 (03) : 287 - 303
  • [10] Acute Stress Detection Using Recurrence Quantification Analysis of Electroencephalogram (EEG) Signals
    Fan, Miaolin
    Tootooni, Mohammad Samie
    Sivasubramony, Rajesh Sharma
    Miskovic, Vladimir
    Rao, Prahalada K.
    Chou, Chun-An
    BRAIN INFORMATICS AND HEALTH, 2016, 9919 : 252 - 261