Automatic Modulation Recognition in Wireless Multi-carrier Wireless Systems with Cepstral Features

被引:20
作者
Keshk, Mohamed El-Hady M. [1 ]
Abd El-Naby, Mohammed [2 ]
Al-Makhlasawy, Rasha M. [3 ,4 ]
El-Khobby, Heba A. [4 ]
Hamouda, W. [5 ]
Abd Elnaby, Mustafa M. [4 ]
El-Rabaie, El-Sayed M. [2 ]
Dessouky, Moawad I. [2 ]
Alshebeili, Saleh A. [6 ]
Abd El-Samie, Fathi E. [7 ,8 ]
机构
[1] Natl Author Remote Sensing & Space Sci, Egyptian Space Program, Cairo, Egypt
[2] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun, Menoufia 32952, Egypt
[3] Elect Res Inst, Dokky, Egypt
[4] Tanta Univ, Fac Engn, Tanta, Egypt
[5] Concordia Univ, Montreal, PQ, Canada
[6] King Saud Univ, KACST TIC Radio Frequency & Photon E Soc RFTONICS, Dept Elect Engn, Riyadh, Saudi Arabia
[7] Menoufia Univ, Fac Elect Engn, Dept Comp Sci & Engn, Menoufia 32952, Egypt
[8] King Saud Univ, KACST TIC Radio Frequency & Photon E Soc RFTONICS, Riyadh, Saudi Arabia
关键词
ADMR; OFDM; MFCC; DT; SVM; RPROANN; AWGN; SDR;
D O I
10.1007/s11277-014-2183-3
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Automatic digital modulation recognition (ADMR) has become an interesting problem in wireless communication systems with various civil and military applications. In this paper, an ADMR algorithm is proposed for both orthogonal frequency division multiplexing and multi-carrier code division multiple access systems using discrete transforms and mel-frequency cepstral coefficients (MFCCs). The proposed algorithm uses one of the discrete cosine transform, discrete sine transform, and discrete wavelet transform with MFCCs to extract the modulated signal coefficients, and uses also either a support vector machine (SVM) or an artificial neural network (ANN) for modulation classification. Simulation results show that the proposed algorithm provides higher recognition rates than those obtained in previous studies, in addition to a superiority of SVM performance compared to ANN performance at low signal-to-noise ratios.
引用
收藏
页码:1243 / 1288
页数:46
相关论文
共 19 条
[1]  
Al-Makhlasawy R. M, 2012, RAD SCI C NRSC APR, P353
[2]  
[Anonymous], 22 INT C ADV INF NET
[3]  
[Anonymous], 2005, NEURAL NETWORKS METH, DOI DOI 10.1007/3-540-28847-3
[4]   Automatic Digital Modulation Classification Using Genetic Programming with K-Nearest Neighbor [J].
Aslam, Muhammad Waqar ;
Zhu, Zhechen ;
Nandi, Asoke K. .
MILITARY COMMUNICATIONS CONFERENCE, 2010 (MILCOM 2010), 2010, :1731-1736
[5]  
Attar AR, 2006, IRAN J SCI TECHNOL B, V30, P775
[6]  
Campello J, 1998, 1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, P193, DOI 10.1109/ISIT.1998.708791
[7]  
Czylwik A, 1996, IEEE GLOBECOM 1996 - CONFERENCE RECORD, VOLS 1-3, P713, DOI 10.1109/GLOCOM.1996.594454
[8]  
Dobre A. O., 2005, SARN S PRINC NJ US 1
[9]   Intelligent digital signal-type identification [J].
Ebrahimzadeh, A. ;
Ranjbar, A. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2008, 21 (04) :569-577
[10]   Automatic Modulation Recognition Using Wavelet Transform and Neural Networks in Wireless Systems [J].
Hassan, K. ;
Dayoub, I. ;
Hamouda, W. ;
Berbineau, M. .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2010,