Polynomial solution of non-central potentials

被引:40
作者
Ikhdair, Sameer M.
Sever, Ramazan
机构
[1] Near East Univ, Dept Phys, Mersin 10, Turkey
[2] Middle E Tech Univ, Dept Phys, TR-06531 Ankara, Turkey
关键词
Schrodinger equation; energy eigenvalues and eigenfunctions; non-central potentials; Nikiforov and Uvarov method;
D O I
10.1007/s10773-007-9356-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the exact energy eigenvalues and eigenfunctions of the Schrodinger equation for charged particles moving in certain class of non-central potentials can be easily calculated analytically in a simple and elegant manner by using Nikiforov and Uvarov (NU) method. We discuss the generalized Coulomb and harmonic oscillator systems. We study the Hartmann Coulomb and the ring-shaped and compound Coulomb plus Aharanov-Bohm potentials as special cases. The results are in exact agreement with other methods.
引用
收藏
页码:2384 / 2395
页数:12
相关论文
共 43 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]  
[Anonymous], 1988, SPECIAL FUNCTIONS MA, DOI DOI 10.1007/978-1-4757-1595-8
[3]   Polynomial solutions of the Schrodinger equation for the generalized Woods-Saxon potential [J].
Berkdemir, C ;
Berkdemir, A ;
Sever, R .
PHYSICAL REVIEW C, 2005, 72 (02)
[4]   Pseudospin symmetry in the relativistic Morse potential including the spin-orbit coupling term [J].
Berkdemir, C .
NUCLEAR PHYSICS A, 2006, 770 (1-2) :32-39
[5]   Systematical approach to the exact solution of the Dirac equation for a deformed form of the Woods-Saxon potential [J].
Berkdemir, Cueneyt ;
Berkdemir, Ayse ;
Sever, Ramazan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (43) :13455-13463
[6]  
Buyukilic F, 1997, THEOR CHEM ACC, V98, P192
[7]  
CARPIDOBERNIDO MV, 1989, PHYS LETT A, V134, P315
[8]   GREEN-FUNCTION FOR AN AXIALLY SYMMETRICAL POTENTIAL-FIELD - A PATH INTEGRAL EVALUATION IN POLAR COORDINATES [J].
CARPIOBERNIDO, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (13) :3013-3019
[9]   ALGEBRAIC TREATMENT OF A GENERAL NONCENTRAL POTENTIAL [J].
CHETOUANI, L ;
GUECHI, L ;
HAMMANN, TF .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (10) :3410-3418