Squared Mobius function for half-integral matrices and its applications

被引:6
作者
Ibukiyama, T [1 ]
Katsurada, H [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Osaka 5600043, Japan
关键词
D O I
10.1006/jnth.2000.2568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an analogue of the square of the usual Mobius function on the set of non-degenerate half-integral matrices. By using this function, we give a reasonable expression of the Koecher-MaaB Dirichlet series for a Siegel Modular form. In addition, we give another proof to a main result of (T. Ibukiyama and H. Saito, 1995, Amer. J. Math. 117, 1097-1155) oil the zeta functions for symmetric matrices. (C) 2001 Academic Press.
引用
收藏
页码:78 / 117
页数:40
相关论文
共 12 条
[1]  
BOCHERER S, 1985, J REINE ANGEW MATH, V362, P146
[2]  
BOCHERER S, 1988, J REINE ANGEW MATH, V384, P80
[3]   SUMS INVOLVING VALUES AT NEGATIVE INTEGERS OF L-FUNCTIONS OF QUADRATIC CHARACTERS [J].
COHEN, H .
MATHEMATISCHE ANNALEN, 1975, 217 (03) :271-285
[4]   ON ZETA-FUNCTIONS ASSOCIATED TO SYMMETRICAL MATRICES .1. AN EXPLICIT FORM OF ZETA-FUNCTIONS [J].
IBUKIYAMA, T ;
SAITO, H .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (05) :1097-1155
[5]   A NOTE ON LOCAL-DENSITIES OF QUADRATIC-FORMS [J].
KITAOKA, Y .
NAGOYA MATHEMATICAL JOURNAL, 1983, 92 (DEC) :145-152
[6]   EULER PRODUCTS AND FOURIER COEFFICIENTS OF AUTOMORPHIC-FORMS ON SYMPLECTIC GROUPS [J].
SHIMURA, G .
INVENTIONES MATHEMATICAE, 1994, 116 (1-3) :531-576
[7]   On the theory of indefinite quadratic forms [J].
Siegel, CL .
ANNALS OF MATHEMATICS, 1944, 45 :577-622
[8]   The analytical theory of quadratic forms [J].
Siegel, CL .
ANNALS OF MATHEMATICS, 1935, 36 :527-606
[9]   2-ADIC DENSITY OF A QUADRATIC FORM [J].
WATSON, GL .
MATHEMATIKA, 1976, 23 (45) :94-106
[10]  
[No title captured]