Hierarchical deep network with uncertainty-aware semi-supervised learning for vessel segmentation

被引:17
作者
Li, Chenxin [1 ]
Ma, Wenao [1 ]
Sun, Liyan [1 ]
Ding, Xinghao [1 ]
Huang, Yue [1 ]
Wang, Guisheng [2 ]
Yu, Yizhou [3 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Dept Radiol, Med Ctr 3, Beijing, Peoples R China
[3] Deepwise AI Lab, Beijing 100125, Peoples R China
基金
中国国家自然科学基金;
关键词
Vessel segmentation; Hierarchical deep network; Attention mechanism; Semi-supervised learning; RETINAL ARTERIOLAR; LIVER; CLASSIFICATION; RISK; 3D;
D O I
10.1007/s00521-021-06578-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The analysis of organ vessels is essential for computer-aided diagnosis and surgical planning. But it is not an easy task since the fine-detailed connected regions of organ vessel bring a lot of ambiguity in vessel segmentation and sub-type recognition, especially for the low-contrast capillary regions. Furthermore, recent two-staged approaches would accumulate and even amplify these inaccuracies from the first-stage whole vessel segmentation into the second-stage sub-type vessel pixel-wise classification. Moreover, the scarcity of manual annotation in organ vessels poses another challenge. In this paper, to address the above issues, we propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels, and enhance the spatial activation in those areas for the sub-type vessels. In addition, we propose an uncertainty-aware semi-supervised training framework to alleviate the annotation-hungry limitation of deep models. The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images. Our implementation is publicly available at https://github.com/XGGNet/Vessel-Seg..
引用
收藏
页码:3151 / 3164
页数:14
相关论文
共 59 条
[1]  
Abramoff Michael D, 2010, IEEE Rev Biomed Eng, V3, P169, DOI 10.1109/RBME.2010.2084567
[2]   Arterioles and Venules Classification in Retinal Images Using Fully Convolutional Deep Neural Network [J].
AlBadawi, Sufian ;
Fraz, M. M. .
IMAGE ANALYSIS AND RECOGNITION (ICIAR 2018), 2018, 10882 :659-668
[3]  
[Anonymous], 2017, arXiv
[4]   Using CNNs for Designing and Implementing an Automatic Vascular Segmentation Method of Biomedical Images [J].
Bruno, Pierangela ;
Zaffino, Paolo ;
Scaramuzzino, Salvatore ;
De Rosa, Salvatore ;
Indolfi, Ciro ;
Calimeri, Francesco ;
Spadea, Maria Francesca .
AI*IA 2018 - ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, 11298 :60-70
[5]   Retinal Arteriolar Diameter and the Prevalence and Incidence of Hypertension: A Systematic Review and Meta-analysis of Their Association [J].
Chew, Sky K. H. ;
Xie, Jing ;
Wang, Jie Jin .
CURRENT HYPERTENSION REPORTS, 2012, 14 (02) :144-151
[6]   Segmentation of Liver Vasculature From Contrast Enhanced CT Images Using Context-Based Voting [J].
Chi, Yanling ;
Liu, Jimin ;
Venkatesh, Sudhakar K. ;
Huang, Su ;
Zhou, Jiayin ;
Tian, Qi ;
Nowinski, Wieslaw L. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (08) :2144-2153
[7]   Opportunities and obstacles for deep learning in biology and medicine [J].
Ching, Travers ;
Himmelstein, Daniel S. ;
Beaulieu-Jones, Brett K. ;
Kalinin, Alexandr A. ;
Do, Brian T. ;
Way, Gregory P. ;
Ferrero, Enrico ;
Agapow, Paul-Michael ;
Zietz, Michael ;
Hoffman, Michael M. ;
Xie, Wei ;
Rosen, Gail L. ;
Lengerich, Benjamin J. ;
Israeli, Johnny ;
Lanchantin, Jack ;
Woloszynek, Stephen ;
Carpenter, Anne E. ;
Shrikumar, Avanti ;
Xu, Jinbo ;
Cofer, Evan M. ;
Lavender, Christopher A. ;
Turaga, Srinivas C. ;
Alexandari, Amr M. ;
Lu, Zhiyong ;
Harris, David J. ;
DeCaprio, Dave ;
Qi, Yanjun ;
Kundaje, Anshul ;
Peng, Yifan ;
Wiley, Laura K. ;
Segler, Marwin H. S. ;
Boca, Simina M. ;
Swamidass, S. Joshua ;
Huang, Austin ;
Gitter, Anthony ;
Greene, Casey S. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2018, 15 (141)
[8]   Medical progress: Strategies for safer liver surgery and partial liver transplantation [J].
Clavien, Pierre-Alain ;
Petrowsky, Henrik ;
DeOliveira, Michelle L. ;
Graf, Rolf .
NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (15) :1545-1559
[9]   An Automatic Graph-Based Approach for Artery/Vein Classification in Retinal Images [J].
Dashtbozorg, Behdad ;
Mendonca, Ana Maria ;
Campilho, Aurelio .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (03) :1073-1083
[10]  
DeVries T, 2018, Learning confidence for out-of-distribution detection in neural networks