An algorithm for constructing the convex hull of a set of spheres in dimension d

被引:12
作者
Boissonnat, JD
Cerezo, A
Devillers, O
Duquesne, J
Yvinec, M
机构
[1] INRIA,F-06561 VALBONNE,FRANCE
[2] UNIV NICE,F-06034 NICE,FRANCE
[3] CNRS,URA 1376,LAB 13S,F-06560 VALBONNE,FRANCE
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1996年 / 6卷 / 02期
关键词
computational geometry; convex hull; spheres;
D O I
10.1016/0925-7721(95)00024-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an algorithm which computes the convex hull of a set of it spheres in dimension d in time O(n([d/2]) + n log n). It is worst-case optimal in three dimensions and in even dimensions. The same method can also be used to compute the convex hull of a set of n homothetic convex objects of E(d). If the complexity of each object is constant, the time needed in the worst case is O(n([d/2]) + n log n).
引用
收藏
页码:123 / 130
页数:8
相关论文
共 8 条
[1]  
Boissonnat J.-D., 1992, IFIP C ALG EFF COMP
[2]   APPLICATIONS OF RANDOM SAMPLING TO ONLINE ALGORITHMS IN COMPUTATIONAL GEOMETRY [J].
BOISSONNAT, JD ;
DEVILLERS, O ;
SCHOTT, R ;
TEILLAUD, M ;
YVINEC, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 8 (01) :51-71
[3]  
CHAZELLE B, 1991, CSTR33691 PRINC U DE
[4]   APPLICATIONS OF RANDOM SAMPLING IN COMPUTATIONAL GEOMETRY .2. [J].
CLARKSON, KL ;
SHOR, PW .
DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) :387-421
[5]   MAXIMUM NUMBERS OF FACES OF A CONVEX POLYTOPE [J].
MCMULLEN, P .
MATHEMATIKA, 1970, 17 (34) :179-&
[6]  
Rappaport D., 1992, Computational Geometry: Theory and Applications, V1, P171, DOI 10.1016/0925-7721(92)90015-K
[7]   ON THE 2-DIMENSIONAL DAVENPORT-SCHINZEL PROBLEM [J].
SCHWARTZ, JT ;
SHARIR, M .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (3-4) :371-393
[8]   SMALL-DIMENSIONAL LINEAR-PROGRAMMING AND CONVEX HULLS MADE EASY [J].
SEIDEL, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1991, 6 (05) :423-434