Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal

被引:422
作者
Shmueli, Karin [1 ]
van Gelderen, Peter [1 ]
de Zwart, Jacco A. [1 ]
Horovitz, Silvina G. [1 ]
Fukunaga, Masaki [1 ]
Jansma, J. Martijn [1 ]
Duyn, Jeff H. [1 ]
机构
[1] Natl Inst Neurol Disorders & Stroke, NIH, Lab Funct & Mol Imaging, Adv MRI Sect, Bethesda, MD 20892 USA
关键词
D O I
10.1016/j.neuroimage.2007.07.037
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Heart rate fluctuations occur in the low-frequency range (<0.1 Hz) probed in functional magnetic resonance imaging (fMRI) studies of resting-state functional connectivity and most fMRI block paradigms and may be related to low-frequency blood-oxygenation-level-dependent (BOLD) signal fluctuations. To investigate this hypothesis, temporal correlations between cardiac rate and resting-state fMRI signal timecourses were assessed at 3 T. Resting-state BOLD fMRI and accompanying physiological data were acquired and analyzed using cross-correlation and regression. Time-shifted cardiac rate timecourses were included as regressors in addition to established physiological regressors (RETROICOR (Glover, G.H., Li, T.Q., Ress, D., 2000. Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44, 162167) and respiration volume per unit time (Birn, R.M., Diamond, J.B., Smith, M.A., Bandettini, P.A., 2006b. Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage 31, 1536-1548). Significant correlations between the cardiac rate and BOLD signal timecourses were revealed, particularly negative correlations in gray matter at time shifts of 6-12 s and positive correlations at time shifts of 30-42 s (TR = 6 s). Regressors consisting of cardiac rate timecourses shifted by delays of between 0 and 24 s explained an additional 1% of the BOLD signal variance on average over the whole brain across 9 subjects, a similar additional variance to that explained by respiration volume per unit time and RETROICOR regressors, even when used in combination with these other physiological regressors. This suggests that including such time-shifted cardiac rate regressors will be beneficial for explaining physiological noise variance and will thereby improve the statistical power in future task-based and resting-state fMRI studies. Published by Elsevier Inc.
引用
收藏
页码:306 / 320
页数:15
相关论文
共 38 条
  • [1] POWER SPECTRUM ANALYSIS OF HEART-RATE FLUCTUATION - A QUANTITATIVE PROBE OF BEAT-TO-BEAT CARDIOVASCULAR CONTROL
    AKSELROD, S
    GORDON, D
    UBEL, FA
    SHANNON, DC
    BARGER, AC
    COHEN, RJ
    [J]. SCIENCE, 1981, 213 (4504) : 220 - 222
  • [2] [Anonymous], P 1995 IEEE INT C IM
  • [3] Cardiac-induced physiologic noise in tissue is a direct observation of cardiac-induced fluctuations
    Bhattacharyya, PK
    Lowe, MJ
    [J]. MAGNETIC RESONANCE IMAGING, 2004, 22 (01) : 9 - 13
  • [4] Birn R. M., 2006, P INT SOC MAG RES ME, P1091
  • [5] Separating respiratory-variation-related neuronal-activity-related fluctuations in fluctuations from fMRI
    Birn, RM
    Diamond, JB
    Smith, MA
    Bandettini, PA
    [J]. NEUROIMAGE, 2006, 31 (04) : 1536 - 1548
  • [6] FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI
    BISWAL, B
    YETKIN, FZ
    HAUGHTON, VM
    HYDE, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) : 537 - 541
  • [7] Reduction of physiological fluctuations in fMRI using digital filters
    Biswal, B
    DeYoe, EA
    Hyde, JS
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (01) : 107 - 113
  • [8] IMPACT: Image-based physiological artifacts estimation and correction technique for functional MRI
    Chuang, KH
    Chen, JH
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2001, 46 (02) : 344 - 353
  • [9] Short-term cardiovascular oscillations in man: measuring and modelling the physiologies
    Cohen, MA
    Taylor, JA
    [J]. JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (03): : 669 - 683
  • [10] Cordes D, 2001, AM J NEURORADIOL, V22, P1326