Pattern Recognition in Musculoskeletal Imaging Using Artificial Intelligence

被引:11
作者
Gorelik, Natalia [1 ]
Chong, Jaron [1 ]
Lin, Dana J. [2 ]
机构
[1] McGill Univ, Dept Diagnost Radiol, Hlth Ctr, Montreal, PQ, Canada
[2] NYU Langone Hlth, Div Musculoskeletal Radiol, Dept Radiol, 301 East 17th St,6th Floor, New York, NY 10003 USA
关键词
musculoskeletal; deep learning; neural network; COMPUTER-AIDED DETECTION; AUTOMATED DETECTION; TEMPORAL SUBTRACTION; VERTEBRAL FRACTURES; THORACOLUMBAR SPINE; CT; DIAGNOSIS; MODEL; CLASSIFICATION; METASTASES;
D O I
10.1055/s-0039-3400266
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) has the potential to affect every step of the radiology workflow, but the AI application that has received the most press in recent years is image interpretation, with numerous articles describing how AI can help detect and characterize abnormalities as well as monitor disease response. Many AI-based image interpretation tasks for musculoskeletal (MSK) pathologies have been studied, including the diagnosis of bone tumors, detection of osseous metastases, assessment of bone age, identification of fractures, and detection and grading of osteoarthritis. This article explores the applications of AI for image interpretation of MSK pathologies.
引用
收藏
页码:38 / 49
页数:12
相关论文
共 71 条
[1]  
[Anonymous], 1975, ASSESSMENT SKELETAL
[2]  
[Anonymous], 2018, J NUCL MED S1
[3]  
Antony J, 2016, 23 INT C PATT REC IC
[4]   Deep learning predicts hip fracture using confounding patient and healthcare variables [J].
Badgeley, Marcus A. ;
Zech, John R. ;
Oakden-Rayner, Luke ;
Glicksberg, Benjamin S. ;
Liu, Manway ;
Gale, William ;
McConnell, Michael, V ;
Percha, Bethany ;
Snyder, Thomas M. ;
Dudley, Joel T. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[5]   Bone-Cancer Assessment and Destruction Pattern Analysis in Long-Bone X-ray Image [J].
Bandyopadhyay, Oishila ;
Biswas, Arindam ;
Bhattacharya, Bhargab B. .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (02) :300-313
[6]   Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs [J].
Banerjee, Imon ;
Kurtz, Camille ;
Devorah, Alon Edward ;
Do, Bao ;
Rubin, Daniel L. ;
Beaulieu, Christopher F. .
JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 84 :123-135
[7]   Vertebral Body Compression Fractures and Bone Density: Automated Detection and Classification on CT Images [J].
Burns, Joseph E. ;
Yao, Jianhua ;
Summers, Ronald M. .
RADIOLOGY, 2017, 284 (03) :788-797
[8]   Automated Detection of Sclerotic Metastases in the Thoracolumbar Spine at CT [J].
Burns, Joseph E. ;
Yao, Jianhua ;
Wiese, Tatjana S. ;
Munoz, Hector E. ;
Jones, Elizabeth C. ;
Summers, Ronald M. .
RADIOLOGY, 2013, 268 (01) :69-78
[9]   Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs [J].
Cheng, Chi-Tung ;
Ho, Tsung-Ying ;
Lee, Tao-Yi ;
Chang, Chih-Chen ;
Chou, Ching-Cheng ;
Chen, Chih-Chi ;
Chung, I-Fang ;
Liao, Chien-Hung .
EUROPEAN RADIOLOGY, 2019, 29 (10) :5469-5477
[10]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328