EEG windowed statistical wavelet deviation for estimation of muscular artifacts

被引:0
作者
Vialatte, F. B. [1 ]
Sole-Casals, J. [2 ]
Cichocki, A. [1 ]
机构
[1] RIKEN, Brain Sci Inst, LABSP, Wako, Saitama, Japan
[2] Univ Vic, Barcelona, Spain
来源
2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL IV, PTS 1-3 | 2007年
关键词
electroencephalography; electromyography; wavelet transforms; biomedical signal processing;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Electroencephalographic (EEG) recordings are, most of the times, corrupted by spurious artifacts, which should be rejected or cleaned by the practitioner. As human scalp EEG screening is error-prone, automatic artifact detection is an issue of capital importance, to ensure objective and reliable results. In this paper we propose a new approach for discrimination of muscular activity in the human scalp quantitative EEG (QEEG), based on the time-frequency shape analysis. The impact of the muscular activity on the EEG can be evaluated from this methodology. We present an application of this scoring as a preprocessing step for EEG signal analysis, in order to evaluate the amount of muscular activity for two set of EEG recordings for dementia patients with early stage of Alzheimer's disease and control age-matched subjects.
引用
收藏
页码:1161 / +
页数:2
相关论文
共 17 条
[1]   Artifact processing in computerized analysis of sleep EEG -: A review [J].
Anderer, P ;
Roberts, S ;
Schlögl, A ;
Gruber, G ;
Klösch, G ;
Herrmann, W ;
Rappelsberger, P ;
Filz, O ;
Barbanoj, MJ ;
Dorffner, G ;
Saletu, B .
NEUROPSYCHOBIOLOGY, 1999, 40 (03) :150-157
[2]   Low-probability event-detection and separation via statistical wavelet thresholding: an application to psychophysiological denoising [J].
Browne, M ;
Cutmore, TRH .
CLINICAL NEUROPHYSIOLOGY, 2002, 113 (09) :1403-1411
[3]   Distinct patterns of brain oscillations underlie two basic parameters of human maze learning [J].
Caplan, JB ;
Madsen, JR ;
Raghavachari, S ;
Kahana, MJ .
JOURNAL OF NEUROPHYSIOLOGY, 2001, 86 (01) :368-380
[4]   Recovering EEG brain signals: Artifact suppression with wavelet enhanced independent component analysis [J].
Castellanos, Nazareth P. ;
Makarov, Valeri A. .
JOURNAL OF NEUROSCIENCE METHODS, 2006, 158 (02) :300-312
[5]  
DELORME A, 2001, P 3 INT C IND COMP A
[6]   A simple system for detection of EEG artifacts in polysomnographic recordings [J].
Durka, PJ ;
Klekowicz, H ;
Blinowska, KJ ;
Szelenberger, W ;
Niemcewicz, S .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2003, 50 (04) :526-528
[7]   A multivariate, spatiotemporal analysis of electromagnetic time-frequency data of recognition memory [J].
Düzel, E ;
Habib, R ;
Schott, B ;
Schoenfeld, A ;
Lobaugh, N ;
McIntosh, AR ;
Scholz, M ;
Heinze, HJ .
NEUROIMAGE, 2003, 18 (02) :185-197
[8]   Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies [J].
Ille, N ;
Berg, P ;
Scherg, M .
JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2002, 19 (02) :113-124
[9]  
Jung TP, 2000, PSYCHOPHYSIOLOGY, V37, P163, DOI 10.1017/S0048577200980259
[10]  
Kronland-Martinet R., 1987, Int. J. Pattern Recognit. Artif. Intell., V1, P273, DOI DOI 10.1142/S0218001487000205