A new approach for multi-omic data integration

被引:0
|
作者
Zuo, Yiming [1 ,2 ]
Yu, Guoqiang [2 ]
Zhang, Chi [1 ]
Ressom, Habtom W. [1 ]
机构
[1] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC 20057 USA
[2] Virginia Polytech Inst & State Univ, Dept Elect & Comp Engn, Arlington, VA USA
关键词
Multi-omic data integration; regularized canonical correlation analysis; graphical lasso; LIPOPROTEIN-LIPASE; IDENTIFICATION; SELECTION;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Recent technological advances have enabled the generation of various omic data (e.g., genomics, proteomics, metabolomics and glycomics) in a high-throughput manner. The integration of multi-omic data sets is desirable to unravel the complexity of a biological system. In this paper, we propose a new approach to investigate both inter and intra relationships for multi-omic data sets by using regularized canonical correlation analysis and graphical lasso. The application of this novel approach on real multi-omic data sets helps identify hub proteins and their neighbors that may be missed by typical statistical analysis to serve as biomarker candidates. Also, the integration of data from various cellular components (i.e., proteins, metabolites and glycans) offers the potential to discover more reliable biomarker candidates for complex disease.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Integration of multi-omic data identifies psoriasis endotypes correlating with clinical and immunological phenotypes
    Cameron, M.
    Golden, J.
    Richardson, B.
    Damiani, G.
    Ali, M.
    Young, A.
    Nichols, C.
    Ward, N.
    McCormick, T.
    Cooper, K.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (09) : S230 - S230
  • [22] Multi-Omic Data Integration Suggests Putative Microbial Drivers of Aetiopathogenesis in Mycosis Fungoides
    Licht, Philipp
    Mailaender, Volker
    CANCERS, 2024, 16 (23)
  • [23] A novel multivariate curve resolution based strategy for multi-omic integration of toxicological data
    Menendez-Pedriza, Albert
    Navarro-Martin, Laia
    Jaumot, Joaquim
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2023, 242
  • [24] PyLiger: scalable single-cell multi-omic data integration in Python']Python
    Lu, Lu
    Welch, Joshua D.
    BIOINFORMATICS, 2022, 38 (10) : 2946 - 2948
  • [25] MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
    Towle-Miller, Lorin M.
    Miecznikowski, Jeffrey C.
    BMC GENOMICS, 2022, 23 (01)
  • [26] MOSCATO: a supervised approach for analyzing multi-Omic single-Cell data
    Lorin M. Towle-Miller
    Jeffrey C. Miecznikowski
    BMC Genomics, 23
  • [27] OMICtools: an informative directory for multi-omic data analysis
    Henry, Vincent J.
    Bandrowski, Anita E.
    Pepin, Anne-Sophie
    Gonzalez, Bruno J.
    Desfeux, Arnaud
    DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2014,
  • [28] The Multi-Omic Approach to Newborn Screening: Opportunities and Challenges
    Ashenden, Alex J.
    Chowdhury, Ayesha
    Anastasi, Lucy T.
    Lam, Khoa
    Rozek, Tomas
    Ranieri, Enzo
    Siu, Carol Wai-Kwan
    King, Jovanka
    Mas, Emilie
    Kassahn, Karin S.
    INTERNATIONAL JOURNAL OF NEONATAL SCREENING, 2024, 10 (03)
  • [29] A Multi-Omic Approach to Understanding the Molecular Landscape of IPF
    Konigsberg, I. R.
    Borie, R.
    Cardwell, J.
    Walts, A.
    Powers, J.
    Brancato, J.
    Rojas, M.
    Wolters, P. J.
    Brown, K. K.
    Blackwell, T. S.
    Fingerlin, T. E.
    Schwartz, D. A.
    Yang, I. V.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2021, 203 (09)
  • [30] What are the merits of a multi-omic approach to diagnosing PTSD?
    Christopher Baethge
    Molecular Psychiatry, 2020, 25 : 3127 - 3128