Common Fixed Point Theorem for Noncontinuous Maps in Complete Metric Spaces Satisfying F - Contraction

被引:0
作者
Mani, Naveen [1 ]
Sharma, Amit [2 ]
Bhardwaj, Reeta [2 ]
机构
[1] Sandip Univ, Nasik, Maharashtra, India
[2] Amity Univ Haryana, Gurgaon, Haryana, India
来源
ADVANCES IN BASIC SCIENCES (ICABS 2019) | 2019年 / 2142卷
关键词
Common fixed point; F; -; contraction; metric spaces; integral contraction; noncontinuous map;
D O I
10.1063/1.5122606
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this manuscript, by using F - contraction, a common fixed point result for a pair of noncontinuous self maps in complete metric spaces are proved. Main result of this paper extend and generalize the result of Wardowski [Fixed Point Theory and Applications 2012, 2012:94]. An example has been given in support of our main finding.
引用
收藏
页数:6
相关论文
共 19 条
[1]   On common fixed points for α-F-contractions and applications [J].
Al-Rawashdeh, Ahmed ;
Aydi, Hassen ;
Felhi, Abdelbasset ;
Sahmim, Slah ;
Shatanawi, Wasfi .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (05) :3445-3458
[2]   Fixed points of generalized contractive mappings of integral type [J].
Alsulami, Hamed H. ;
Karapinar, Erdal ;
O'Regan, Donal ;
Shahi, Priya .
FIXED POINT THEORY AND APPLICATIONS, 2014,
[3]   Fixed points of weakly compatible maps satisfying a general contractive condition of integral type [J].
Altun, Ishak ;
Turkoglu, Duran ;
Rhoades, Billy E. .
FIXED POINT THEORY AND APPLICATIONS, 2007, 2007 (1)
[4]  
[Anonymous], 2018, Math. Morav., DOI DOI 10.5937/MATMOR1801043M
[5]  
[Anonymous], 2013, INT J NONLINEAR SCI
[6]  
[Anonymous], 2013, J MATH-UK
[7]  
Banach S., 1922, Fund. Maths., V3, P133, DOI [DOI 10.4064/FM-3-1-133-181, 10.4064/fm-3-1-133-181]
[8]  
Batra R., 2014, INT J MATH ANAL, V8, P1315, DOI [10.12988/ijma.2014.45147, DOI 10.12988/IJMA.2014.45147]
[9]  
Branciari A., 2002, Int J Math Math Sci, V29, P531, DOI [10.1155/S0161171202007524, DOI 10.1155/S0161171202007524]
[10]  
Brown M. P., 2004, APPL PHYS LETT, V85, P2503