Unsupervised Cross-Domain White Blood Cells Classification Using DANN

被引:0
|
作者
Zhang, Lixin [1 ]
Fu, Yining [1 ]
Yang, Yuhao [1 ]
Ding, Yongzheng [1 ]
Yu, Xuyao [2 ]
Li, Huanming [3 ]
Yu, Hui [1 ]
Chen, Chong [4 ]
机构
[1] Tianjin Univ, Tianjin Key Lab Biomed Detecting Techn & Instrume, Tianjin, Peoples R China
[2] Tianjin Med Univ Canc Inst & Hosp, Tianjin, Peoples R China
[3] Tianjin 4 Ctr Hosp, Tianjin Joint Lab Intelligent Med, Tianjin, Peoples R China
[4] Tianjin Univ, Inst Med Engn & Translat Med, Tianjin, Peoples R China
来源
2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022 | 2022年
关键词
White blood cells classification; Deep learning; Domain adaptation; Generative adversarial network;
D O I
10.1145/3574198.3574201
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classification of white blood cells (WBCs) from microscopic blood image provides invaluable information for diagnosis of various diseases. Deep Convolutional Neural Networks are often used to classify WBCs automatically and have obtained certain achievements. However, when the training (source) dataset and test (target) dataset fall from different data distributions (i.e. domain shift), deep convolution neural networks adapt poorly. To solve the problem, we proposed a DANN-based method aiming to help our classifier learn domain-invariant information by using adversarial training. Two datasets were tested and our method achieved 97.1% accuracy, 97.2% recall, 97.2% precision and 97.4%f1-score, respectively. Domain adaptation verification shows that the proposed method has higher performance than other adaptive methods, and has broad application prospects in WBC classification.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 50 条
  • [31] Cross-Domain Contrastive Learning for Hyperspectral Image Classification
    Guan, Peiyan
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [32] Adversarial Domain Adaptation with Semantic Consistency for Cross-Domain Image Classification
    Cao, Manliang
    Zhou, Xiangdong
    Xu, Yiming
    Pang, Yue
    Yao, Bo
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 259 - 268
  • [33] Domain Adaptation via Feature Disentanglement for cross-domain image classification
    Wu, Zhi-Ze
    Du, Chang-Jiang
    Wang, Xin-Qi
    Zou, Le
    Cheng, Fan
    Li, Teng
    Nian, Fu-Dong
    Weise, Thomas
    Wang, Xiao-Feng
    APPLIED SOFT COMPUTING, 2025, 172
  • [34] Joint Domain Matching and Classification for cross-domain adaptation via ELM
    Chen, Chao
    Jiang, Buyuan
    Cheng, Zhaowei
    Jin, Xinyu
    NEUROCOMPUTING, 2019, 349 : 314 - 325
  • [35] Graph Domain Adversarial Transfer Network for Cross-Domain Sentiment Classification
    Tang, Hengliang
    Mi, Yuan
    Xue, Fei
    Cao, Yang
    IEEE ACCESS, 2021, 9 (09): : 33051 - 33060
  • [36] Domain-knowledge Inspired Pseudo Supervision (DIPS) for unsupervised image-to-image translation models to support cross-domain classification
    Al-Hindawi, Firas
    Siddiquee, Md Mahfuzur Rahman
    Wu, Teresa
    Hu, Han
    Sun, Ying
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [37] Deep Cross-Domain Few-Shot Learning for Hyperspectral Image Classification
    Li, Zhaokui
    Liu, Ming
    Chen, Yushi
    Xu, Yimin
    Li, Wei
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [38] Unsupervised Learning for Cross-Domain Medical Image Synthesis Using Deformation Invariant Cycle Consistency Networks
    Wang, Chengjia
    Macnaught, Gillian
    Papanastasiou, Giorgos
    MacGillivray, Tom
    Newby, David
    SIMULATION AND SYNTHESIS IN MEDICAL IMAGING, 2018, 11037 : 52 - 60
  • [39] Unsupervised domain adaptation alignment method for cross-domain semantic segmentation of remote sensing images
    Shen Z.
    Ni H.
    Guan H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (12): : 1 - 2
  • [40] Unsupervised domain adaptation for the detection of cardiomegaly in cross-domain chest X-ray images
    Thiam, Patrick
    Lausser, Ludwig
    Kloth, Christopher
    Blaich, Daniel
    Liebold, Andreas
    Beer, Meinrad
    Kestler, Hans A.
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 6