Block LU factors of generalized companion matrix pencils

被引:7
作者
Amiraslani, A.
Aruliah, D. A.
Corless, R. M.
机构
[1] Univ Calgary, Dept Math & Stat, Calgary, AB T2N 1N4, Canada
[2] Univ Ontario Inst Technol, Fac Sci, Oshawa, ON L1H 7K4, Canada
[3] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
关键词
matrix polynomials; polynomial eigenvalues; block LU factoring;
D O I
10.1016/j.tcs.2007.04.019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We present formulas for computations involving companion matrix pencils as may arise in considering polynomial eigenvalue problems. In particular, we provide explicit companion matrix pencils for matrix polynomials expressed in a variety of polynomial bases including monomial, orthogonal, Newton, Lagrange, and Bernstein/Bezier bases. Additionally, we give a pair of explicit LU factors associated with each pencil and a prescription for block pivoting when required. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 147
页数:14
相关论文
共 24 条
  • [1] Abramowitz M., 1970, HDB MATH FUNCTIONS
  • [2] AMIRASLANI A, 2006, UNPUB IMA J NUMER AN
  • [3] Amiraslani A., 2006, THESIS U W ONTARIO L
  • [4] AMIRASLANI A, 2006, UNPUB LINEAR ALGEBRA
  • [5] [Anonymous], 2001, SPECTRAL METHODS MAT
  • [6] [Anonymous], 1991, TOPICS MATRIX ANAL
  • [7] [Anonymous], 1994, FDN COMPUTER SCI
  • [8] Barnett S., 1983, POLYNOMIALS LINEAR C
  • [9] Barycentric Lagrange interpolation
    Berrut, JP
    Trefethen, LN
    [J]. SIAM REVIEW, 2004, 46 (03) : 501 - 517
  • [10] Bernstein-Bezoutian matrices
    Bini, DA
    Gemignani, L
    [J]. THEORETICAL COMPUTER SCIENCE, 2004, 315 (2-3) : 319 - 333