Soybean Seedling Root Segmentation Using Improved U-Net Network

被引:3
作者
Xu, Xiuying [1 ,2 ]
Qiu, Jinkai [1 ]
Zhang, Wei [1 ,2 ]
Zhou, Zheng [1 ]
Kang, Ye [1 ]
机构
[1] Heilongjiang Bayi Agr Univ, Coll Engn, Daqing 163319, Peoples R China
[2] Heilongjiang Prov Conservat Tillage Engn Technol, Daqing 163319, Peoples R China
关键词
soybean seedling; root image; semantic segmentation; U-Net model; attention mechanism;
D O I
10.3390/s22228904
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Soybean seedling root morphology is important to genetic breeding. Root segmentation is a key technique for identifying root morphological characteristics. This paper proposed a semantic segmentation model of soybean seedling root images based on an improved U-Net network to address the problems of the over-segmentation phenomenon, unsmooth root edges and root disconnection, which are easily caused by background interference such as water stains and noise, as well as inconspicuous contrast in soybean seedling images. Soybean seedling root images in the hydroponic environment were collected for annotation and augmentation. A double attention mechanism was introduced in the downsampling process, and an Attention Gate mechanism was added in the skip connection part to enhance the weight of the root region and suppress the interference of background and noise. Then, the model prediction process was visually interpreted using feature maps and class activation mapping maps. The remaining background noise was removed by connected component analysis. The experimental results showed that the Accuracy, Precision, Recall, F1-Score and Intersection over Union of the model were 0.9962, 0.9883, 0.9794, 0.9837 and 0.9683, respectively. The processing time of an individual image was 0.153 s. A segmentation experiment on soybean root images was performed in the soil-culturing environment. The results showed that this proposed model could extract more complete detail information and had strong generalization ability. It can achieve accurate root segmentation in soybean seedlings and provide a theoretical basis and technical support for the quantitative evaluation of the root morphological characteristics in soybean seedlings.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] An effective U-Net and BiSeNet complementary network for spine segmentation
    Deng, Yunjiao
    Gu, Feng
    Zeng, Daxing
    Lu, Junyan
    Liu, Haitao
    Hou, Yulei
    Zhang, Qinghua
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 89
  • [22] Segmentation of thyroid glands and nodules in ultrasound images using the improved U-Net architecture
    Tianlei Zheng
    Hang Qin
    Yingying Cui
    Rong Wang
    Weiguo Zhao
    Shijin Zhang
    Shi Geng
    Lei Zhao
    BMC Medical Imaging, 23
  • [23] Segmentation of thyroid glands and nodules in ultrasound images using the improved U-Net architecture
    Zheng, Tianlei
    Qin, Hang
    Cui, Yingying
    Wang, Rong
    Zhao, Weiguo
    Zhang, Shijin
    Geng, Shi
    Zhao, Lei
    BMC MEDICAL IMAGING, 2023, 23 (01)
  • [24] Segmentation of ovarian cyst using improved U-NET and hybrid deep learning model
    Kamala C
    Joshi Manisha Shivaram
    Multimedia Tools and Applications, 2024, 83 : 42645 - 42679
  • [25] Segmentation of ovarian cyst using improved U-NET and hybrid deep learning model
    Kamala, C.
    Shivaram, Joshi Manisha
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (14) : 42645 - 42679
  • [26] Cervical Image Segmentation using U-Net Model
    Liu, Yao
    Bai, Bing
    Chen, Hua-Ching
    Liu, Peizhong
    Feng, Hsuan-Ming
    2019 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS), 2019,
  • [27] Fuzzy U-Net Neural Network Design for Image Segmentation
    Kirichev, Mark
    Slavov, Todor
    Momcheva, Galina
    CONTEMPORARY METHODS IN BIOINFORMATICS AND BIOMEDICINE AND THEIR APPLICATIONS, 2022, 374 : 177 - 184
  • [28] Skin lesion segmentation using convolutional neural networks with improved U-Net architecture
    Iranpoor, Rasool
    Mahboob, Amir Soltany
    Shahbandegan, Shakiba
    Baniasadi, Nasrin
    2020 6TH IRANIAN CONFERENCE ON SIGNAL PROCESSING AND INTELLIGENT SYSTEMS (ICSPIS), 2020,
  • [29] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Faguo Zhou
    Yuansheng Ye
    Yanan Song
    Journal of Signal Processing Systems, 2022, 94 : 1145 - 1157
  • [30] Image Segmentation of Rectal Tumor Based on Improved U-Net Model with Deep Learning
    Zhou, Faguo
    Ye, Yuansheng
    Song, Yanan
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2022, 94 (11): : 1145 - 1157