Soybean Seedling Root Segmentation Using Improved U-Net Network

被引:3
作者
Xu, Xiuying [1 ,2 ]
Qiu, Jinkai [1 ]
Zhang, Wei [1 ,2 ]
Zhou, Zheng [1 ]
Kang, Ye [1 ]
机构
[1] Heilongjiang Bayi Agr Univ, Coll Engn, Daqing 163319, Peoples R China
[2] Heilongjiang Prov Conservat Tillage Engn Technol, Daqing 163319, Peoples R China
关键词
soybean seedling; root image; semantic segmentation; U-Net model; attention mechanism;
D O I
10.3390/s22228904
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Soybean seedling root morphology is important to genetic breeding. Root segmentation is a key technique for identifying root morphological characteristics. This paper proposed a semantic segmentation model of soybean seedling root images based on an improved U-Net network to address the problems of the over-segmentation phenomenon, unsmooth root edges and root disconnection, which are easily caused by background interference such as water stains and noise, as well as inconspicuous contrast in soybean seedling images. Soybean seedling root images in the hydroponic environment were collected for annotation and augmentation. A double attention mechanism was introduced in the downsampling process, and an Attention Gate mechanism was added in the skip connection part to enhance the weight of the root region and suppress the interference of background and noise. Then, the model prediction process was visually interpreted using feature maps and class activation mapping maps. The remaining background noise was removed by connected component analysis. The experimental results showed that the Accuracy, Precision, Recall, F1-Score and Intersection over Union of the model were 0.9962, 0.9883, 0.9794, 0.9837 and 0.9683, respectively. The processing time of an individual image was 0.153 s. A segmentation experiment on soybean root images was performed in the soil-culturing environment. The results showed that this proposed model could extract more complete detail information and had strong generalization ability. It can achieve accurate root segmentation in soybean seedlings and provide a theoretical basis and technical support for the quantitative evaluation of the root morphological characteristics in soybean seedlings.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Improved U-NET Semantic Segmentation Network
    Gao, Xueyan
    Fang, Lijin
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 7090 - 7095
  • [2] Improved U-Net Network Segmentation Method for Remote Sensing Image
    Zhong, Letian
    Lin, Yong
    Sul, Yian
    Fang, Xianbao
    2022 IEEE 6TH ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2022, : 1034 - 1039
  • [3] Refined Segmentation Network for Leather Surface Defect Detection Based on Improved U-Net
    Yujin W.
    Huiling H.
    Lei F.
    Jun H.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2024, 36 (03): : 413 - 422
  • [4] RU-Net: An improved U-Net placenta segmentation network based on ResNet
    Wang, Yi
    Li, Yuan-Zhe
    Lai, Qing-Quan
    Li, Shu-Ting
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 227
  • [5] Pixel U-Net: an improved version of U-Net for binary segmentation of wind turbine blades
    Rizvi, Syed Zeeshan
    Jamil, Mohsin
    Huang, Weimin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (8-9) : 6299 - 6307
  • [6] Imaging segmentation mechanism for rectal tumors using improved U-Net
    Zhang, Kenan
    Yang, Xiaotang
    Cui, Yanfen
    Zhao, Jumin
    Li, Dengao
    BMC MEDICAL IMAGING, 2024, 24 (01)
  • [7] Lunar ground segmentation using a modified U-net neural network
    Petrakis, Georgios
    Partsinevelos, Panagiotis
    MACHINE VISION AND APPLICATIONS, 2024, 35 (03)
  • [8] Research on the Corn Stover Image Segmentation Method via an Unmanned Aerial Vehicle (UAV) and Improved U-Net Network
    Xu, Xiuying
    Gao, Yingying
    Fu, Changhao
    Qiu, Jinkai
    Zhang, Wei
    AGRICULTURE-BASEL, 2024, 14 (02):
  • [9] Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
    Sun, Chuanlong
    Zhao, Hong
    Mu, Liang
    Xu, Fuliang
    Lu, Laiwei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 787 - 801
  • [10] An Attention-Based Improved U-Net Neural Network Model for Semantic Segmentation of Moving Objects
    Cui, Zhihao
    IEEE ACCESS, 2024, 12 : 57071 - 57081