THE MINIMAL VOLUME ORIENTABLE HYPERBOLIC 2-CUSPED 3-MANIFOLDS

被引:35
作者
Agol, Ian [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1090/S0002-9939-10-10364-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the Whitehead link complement and the (-2,3,8) pretzel link complement are the minimal volume orientable hyperbolic 3-manifolds with two cusps, with volume 3.66... = 4 x Catalan's constant. We use topological arguments to establish the existence of an essential surface which provides a lower bound on volume and strong constraints on the manifolds that realize that lower bound.
引用
收藏
页码:3723 / 3732
页数:10
相关论文
共 22 条
[1]  
ADAMS CC, 1988, J LOND MATH SOC, V38, P555
[2]   Lower bounds on volumes of hyperbolic Haken 3-manifolds [J].
Agol, Ian ;
Storm, Peter A. ;
Thurston, William P. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (04) :1053-1077
[3]  
[Anonymous], 1984, The Smith conjecture
[4]  
[Anonymous], 2007, Clay Mathematics Institute Monographs
[5]  
[Anonymous], ARXIVMATHDG0303109
[6]   POSITIVITY OF THE UNIVERSAL PAIRING IN 3 DIMENSIONS [J].
Calegari, Danny ;
Freedman, Michael H. ;
Walker, Kevin .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (01) :107-188
[7]  
Canary RD, 2004, MEM AM MATH SOC, V172, P1
[8]   The orientable cusped hyperbolic 3-manifolds of minimum volume [J].
Cao, C ;
Meyerhoff, GR .
INVENTIONES MATHEMATICAE, 2001, 146 (03) :451-478
[9]  
Cao HD, 2006, ASIAN J MATH, V10, P165
[10]   BOUNDED, SEPARATING, INCOMPRESSIBLE SURFACES IN KNOT MANIFOLDS [J].
CULLER, M ;
SHALEN, PB .
INVENTIONES MATHEMATICAE, 1984, 75 (03) :537-545