Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs

被引:2
作者
Gessert, Nils [1 ]
Schlaefer, Alexander [1 ]
机构
[1] Hamburg Univ Technol, Inst Med Technol, Hamburg, Germany
来源
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: MULTI-SEQUENCE CMR SEGMENTATION, CRT-EPIGGY AND LV FULL QUANTIFICATION CHALLENGES | 2020年 / 12009卷
关键词
Left ventricle quantification; Transfer learning; Regression; Regularization; DEEP; HEART;
D O I
10.1007/978-3-030-39074-7_39
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Cardiac left ventricle (LV) quantification provides a tool for diagnosing cardiac diseases. Automatic calculation of all relevant LV indices from cardiac MR images is an intricate task due to large variations among patients and deformation during the cardiac cycle. Typical methods are based on segmentation of the myocardium or direct regression from MR images. To consider cardiac motion and deformation, recurrent neural networks and spatio-temporal convolutional neural networks (CNNs) have been proposed. We study an approach combining state-of-the-art models and emphasizing transfer learning to account for the small dataset provided for the LVQuan19 challenge. We compare 2D spatial and 3D spatio-temporal CNNs for LV indices regression and cardiac phase classification. To incorporate segmentation information, we propose an architecture-independent segmentation-based regularization. To improve the robustness further, we employ a search scheme that identifies the optimal ensemble from a set of architecture variants. Evaluating on the LVQuan19 Challenge training dataset with 5-fold cross-validation, we achieve mean absolute errors of 111 +/- 76mm(2), 1.84 +/- 0.90mm and 1.22 +/- 0.60mm for area, dimension and regional wall thickness regression, respectively. The error rate for cardiac phase classification is 6.7%.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 17 条
[1]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[2]   Skin Lesion Classification Using CNNs With Patch-Based Attention and Diagnosis-Guided Loss Weighting [J].
Gessert, Nils ;
Sentker, Thilo ;
Madesta, Frederic ;
Schmitz, Ruediger ;
Kniep, Helge ;
Baltruschat, Ivo ;
Werner, Rene ;
Schlaefer, Alexander .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2020, 67 (02) :495-503
[3]   Automatic Plaque Detection in IVOCT Pullbacks Using Convolutional Neural Networks [J].
Gessert, Nils ;
Lutz, Matthias ;
Heyder, Markus ;
Latus, Sarah ;
Leistner, David M. ;
Abdelwahed, Youssef S. ;
Schlaefer, Alexander .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :426-434
[4]  
Hao Xu, 2019, Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. 9th International Workshop, STACOM 2018. Held in Conjunction with MICCAI 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11395), P402, DOI 10.1007/978-3-030-12029-0_43
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[7]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[8]  
Jiahui Li, 2019, Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. 9th International Workshop, STACOM 2018. Held in Conjunction with MICCAI 2018. Revised Selected Papers: Lecture Notes in Computer Science (LNCS 11395), P381, DOI 10.1007/978-3-030-12029-0_41
[9]   The Role of Cardiovascular Magnetic Resonance Imaging in Heart Failure [J].
Karamitsos, Theodoros D. ;
Francis, Jane M. ;
Myerson, Saul ;
Selvanayagam, Joseph B. ;
Neubauer, Stefan .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2009, 54 (15) :1407-1424
[10]   Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning [J].
Shin, Hoo-Chang ;
Roth, Holger R. ;
Gao, Mingchen ;
Lu, Le ;
Xu, Ziyue ;
Nogues, Isabella ;
Yao, Jianhua ;
Mollura, Daniel ;
Summers, Ronald M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1285-1298