Iteration penalty method for the incompressible Navier-Stokes equations with variable density based on the artificial compressible method

被引:5
作者
An, Rong [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable density incompressible flows; Navier-Stokes equations; Iteration penalty method; Stability; Error estimates; FINITE-ELEMENT-METHOD; ERROR ANALYSIS;
D O I
10.1007/s10444-020-09757-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the artificial compressible method, an iteration penalty semi-discrete scheme is proposed for the numerical simulations of the incompressible Navier-Stokes equations with variable density. Compared with the classical penalty scheme, the main feature is that the proposed iteration penalty scheme is of the first-order temporal convergence rate for any penalty parameter epsilon > 0 independent of the time step size tau. Numerical results are given to illustrate the theoretical analysis.
引用
收藏
页数:29
相关论文
共 15 条
[1]   Error analysis of a time-splitting method for incompressible flows with variable density [J].
An, Rong .
APPLIED NUMERICAL MATHEMATICS, 2020, 150 :384-395
[2]   Two-level iteration penalty methods for the incompressible flows [J].
An, Rong ;
Shi, Feng .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (02) :630-641
[3]  
ANTONTSEV SN, 1990, STUD MATH APPL, V22
[4]   Analysis of the iterative penalty method for the Stokes equations [J].
Cheng, Xiao-liang ;
Shaikh, Abdul Wasim .
APPLIED MATHEMATICS LETTERS, 2006, 19 (10) :1024-1028
[5]  
Girault V., 2012, FINITE ELEMENT METHO
[6]   A splitting method for incompressible flows with variable density based on a pressure Poisson equation [J].
Guermond, J. -L. ;
Salgado, Abner .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :2834-2846
[7]   A penalty finite element method based on the Euler implicit/explicit scheme for the time-dependent Navier-Stokes equations [J].
He, Yinnian ;
Li, Jian .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (03) :708-725
[8]   Optimal error estimate of the penalty finite element method for the time-dependent Navier-Stokes equations [J].
He, YN .
MATHEMATICS OF COMPUTATION, 2005, 74 (251) :1201-1216
[9]   New development in freefem++ [J].
Hecht, F. .
JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) :251-265
[10]   FINITE-ELEMENT APPROXIMATION OF THE NONSTATIONARY NAVIER-STOKES PROBLEM .4. ERROR ANALYSIS FOR 2ND-ORDER TIME DISCRETIZATION [J].
HEYWOOD, JG ;
RANNACHER, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (02) :353-384