Kuroda's formula and arithmetic statistics

被引:1
作者
Chan, Stephanie [1 ]
Milovic, Djordjo [1 ]
机构
[1] UCL, Dept Math, Gower St, London WC1E 6BT, England
基金
欧洲研究理事会;
关键词
FIELDS;
D O I
10.1007/s00209-021-02823-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Kuroda's formula relates the class number of a multiquadratic number field K to the class numbers of its quadratic subfields k(i). A key component in this formula is the unit group index Q(K) = [O-K(x) : Pi(i) O-ki(x)]. We study how Q(K) behaves on average in certain natural families of totally real biquadratic fields K parametrized by prime numbers.
引用
收藏
页码:1509 / 1527
页数:19
相关论文
共 22 条
[1]   On the rank of the 2-class group of Q(√m, √d) [J].
Azizi, A ;
Mouhib, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (07) :2741-2752
[2]   On the unit group of some multiquadratic number fields [J].
Benjamin, Elliot ;
Lemmermeyer, Franz ;
Snyder, Chip .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 230 (01) :27-40
[3]   ON THE EXISTENCE OF FIELDS GOVERNING THE 2-INVARIANTS OF THE CLASSGROUP OF Q(SQUARE-ROOT-DP) AS P-VARIES [J].
COHN, H ;
LAGARIAS, JC .
MATHEMATICS OF COMPUTATION, 1983, 41 (164) :711-730
[4]   On the negative Pell equation [J].
Fouvry, Etienne ;
Klueners, Juergen .
ANNALS OF MATHEMATICS, 2010, 172 (03) :2035-2104
[5]  
Hecke E., 1981, GRADUATE TEXTS MATH, V77
[6]  
Ireland K., 1990, CLASSICAL INTRO MODE, V84
[7]  
Kubota T., 1953, NAGOYA MATH J, V6, P119, DOI [10.1017/S0027763000017050, DOI 10.1017/S0027763000017050]
[8]  
Kubota T., 1955, Nagoya Math. J, V10, P65
[9]  
Kuroda Sigekatu., 1950, Nagoya Math. J, V1, P1, DOI DOI 10.1017/S0027763000022777
[10]  
Lagarias J.C., 1984, TOPICS CLASSICAL NUM, V34, P257