Operators' s-parameterized ordering and its classical correspondence in quantum optics theory

被引:10
作者
Fan Hong-Yi [1 ]
Yuan Hong-Chun [1 ]
Hu Li-Yun [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Shanghai 200030, Peoples R China
[2] Jiangxi Normal Univ, Coll Phys & Commun Elect, Nanchang 330022, Peoples R China
基金
中国国家自然科学基金;
关键词
s-ordered operator expansion formula; the IWSOP technique; two-variable Hermite polynomial; ENTANGLED STATE; MECHANICS;
D O I
10.1088/1674-1056/19/10/104204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In reference to the Weyl ordering x(m)p(n) -> (1/2)(m) Sigma(m)(l=0) (m l) Xm-l P-n X-l, where X and P are coordinate and momentum operator, respectively, this paper examines operators; s-parametrized ordering and its classical correspondence, finds the fundamental function-operator correspondence (1 - s/2)((n+m)/2) H-m,H-n (root 2/1 - s alpha*, root 2/1 - s alpha) -> a(dagger m)a(n), and its complementary relation alpha(n)alpha*(m) -> (-i)(n+m) (1 - s/2)((m+n)/2) : H-m,H-n (i root 2/1 - s a(dagger), i root 2/1 - s a):, where H-m,H-n is the two-variable Hermite polynomial a, a(dagger) are bosonic annihilation and creation operators respectively, s is a complex parameter. The s'-ordered operator power-series expansion of s-ordered operator (s)a(dagger m)a(n)(s) in terms of the two-variable Hermite polynomial is also derived. Application of operators' s-ordering formula in studying displaced-squeezed chaotic filed is discussed.
引用
收藏
页数:7
相关论文
共 22 条
[1]   DENSITY OPERATORS AND QUASIPROBABILITY DISTRIBUTIONS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1882-+
[2]   ORDERED EXPANSIONS IN BOSON AMPLITUDE OPERATORS [J].
CAHILL, KE ;
GLAUBER, RJ .
PHYSICAL REVIEW, 1969, 177 (5P1) :1857-+
[3]  
Erdelyi A., 1953, Higher Transcendental Functions
[4]   Two quantum-mechanical photocount formulas [J].
Fan, Hong-yi ;
Hu, Li-yun .
OPTICS LETTERS, 2008, 33 (05) :443-445
[5]  
Fan HY, 2007, CHINESE PHYS LETT, V24, P3322
[6]   The s-parameterized Weyl-Wigner correspondence in the entangled form and its applications [J].
Fan Hong-Yi ;
Hu Li-Yun ;
Yuan Hong-Chun .
CHINESE PHYSICS B, 2010, 19 (06)
[7]   Unifying the theory of integration within normal-, Weyl- and antinormal-ordering of operators and the s-ordered operator expansion formula of density operators [J].
Fan Hong-Yi .
CHINESE PHYSICS B, 2010, 19 (05) :0503031-0503037
[8]   s-Parameterized phase space distribution for describing no counts registered on a photonic detector [J].
Fan, Hong-yi ;
Lv, Cui-hong .
OPTICS COMMUNICATIONS, 2009, 282 (24) :4741-4744
[9]   Newton-Leibniz integration for ket-bra operators in quantum mechanics and derivation of entangled state representations [J].
Fan, HY ;
Lu, HL ;
Fan, Y .
ANNALS OF PHYSICS, 2006, 321 (02) :480-494
[10]   EPR entangled state and generalized Bargmann transformation [J].
Fan, HY ;
Chen, JH .
PHYSICS LETTERS A, 2002, 303 (5-6) :311-317