Robust exponential stability of impulsive switched systems with switching delays: A Razumikhin approach

被引:37
作者
Liu, Xiu [1 ]
Zhong, Shouming [1 ,2 ]
Ding, Xiuyong [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Minist Educ, Key Lab Neuroinformat, Chengdu 610054, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Impulsive systems; Switched systems; Minimum dwell time; Exponential stability; Razumikhin method; STABILIZATION; CRITERIA;
D O I
10.1016/j.cnsns.2011.09.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we focus on the robust exponential stability of a class of uncertain nonlinear impulsive switched systems with switching delays. We introduce a novel type of piecewise Lyapunov-Razumikhin functions. Such functions can efficiently eliminate the impulsive and switching jump of adjacent Lyapunov functions at impulsive switching instants. By Razumikhin technique, the delay-independent criteria of exponential stability are established on the minimum dwell time. Finally, an illustrative numerical example is presented to show the effectiveness of the obtained theoretical results. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1805 / 1812
页数:8
相关论文
共 17 条
[1]  
Bainov D.D., 1989, Systems with Impulse Effect
[2]   On hybrid impulsive and switching systems and application to nonlinear control [J].
Guan, ZH ;
Hill, DJ ;
Shen, XM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (07) :1058-1062
[3]  
Haddad WM., 2006, IMPULSIVE HYBRID DYN
[4]  
Lakshmikantham V., 1989, World scientific, V6
[5]   Hybrid impulsive and switching time-delay systems [J].
Li, C. ;
Ma, F. ;
Feng, G. .
IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (11) :1487-1498
[6]   Criteria for robust stability and stabilization of uncertain linear systems with state delay [J].
Li, X ;
deSouza, CE .
AUTOMATICA, 1997, 33 (09) :1657-1662
[7]  
Liberzon D., 2003, SYS CON FDN, P190, DOI 10.1007/978-1-4612-0017-8
[8]   Stability and robustness of quasi-linear impulsive hybrid systems [J].
Liu, B ;
Liu, XZ ;
Liao, XX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 283 (02) :416-430
[9]   Comparison Principle and Stability of Discrete-Time Impulsive Hybrid Systems [J].
Liu, Bin ;
Hill, David J. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (01) :233-245
[10]   Input-to-state stability of impulsive and switching hybrid systems with time-delay [J].
Liu, Jun ;
Liu, Xinzhi ;
Xie, Wei-Chau .
AUTOMATICA, 2011, 47 (05) :899-908