Nitric oxide induced by polyamines involves antioxidant systems against chilling stress in tomato (Lycopersicon esculentum Mill.) seedling

被引:24
作者
Diao, Qian-nan [1 ]
Song, Yong-jun [1 ]
Shi, Dong-mei [1 ]
Qi, Hong-yan [1 ]
机构
[1] Shenyang Agr Univ, Collaborat Innovat Ctr Protected Vegetable Surrou, Key Lab Protected Hort, Minist Educ & Liaoning Prov,Coll Hort, Shenyang 110866, Peoples R China
关键词
Antioxidant enzymes; Chilling tolerance; Hydrogen peroxide; Nitric oxide; Spermidine; Tomato; INDUCED OXIDATIVE DAMAGE; HYDROGEN-PEROXIDE; ABIOTIC STRESS; CELL-DEATH; CHLOROPHYLL FLUORESCENCE; PHYSIOLOGICAL STRATEGIES; ASCORBATE PEROXIDASE; FREEZING TOLERANCE; SYNTHASE ACTIVITY; COLD-ACCLIMATION;
D O I
10.1631/jzus.B1600102
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polyamines (PAs) and nitric oxide (NO) are vital signals in modulating plant response to abiotic stress. However, to our knowledge, studies on the relationship between NO and PAs in response to cold stress in tomato are limited. Accordingly, in this study, we investigated the effects of putrescine (Put) and spermidine (Spd) on NO generation and the function of Spd-induced NO in the tolerance of tomato seedling under chilling stress. Spd increased NO release via the nitric oxide synthase (NOS)-like and nitrate reductase (NR) enzymatic pathways in the seedlings, whereas Put had no such effect. Moreover, H2O2 might act as an upstream signal to stimulate NO production. Both exogenous NO donor (sodium nitroprusside (SNP)) and Spd enhanced chilling tolerance in tomato, thereby protecting the photosynthetic system from damage. Compared to chilling treatment alone, Spd enhanced the gene expressions of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), and their enzyme activities in tomato leaves. However, a scavenger or inhibitor of NO abolished Spd-induced chilling tolerance and blocked the increased expression and activity due to Spd of these antioxidant enzymes in tomato leaves under chilling stress. The results showed that NO induced by Spd plays a crucial role in tomato's response to chilling stress.
引用
收藏
页码:916 / 930
页数:15
相关论文
共 97 条
[1]   Polyamines: molecules with regulatory functions in plant abiotic stress tolerance [J].
Alcazar, Ruben ;
Altabella, Teresa ;
Marco, Francisco ;
Bortolotti, Cristina ;
Reymond, Matthieu ;
Koncz, Csaba ;
Carrasco, Pedro ;
Tiburcio, Antonio F. .
PLANTA, 2010, 231 (06) :1237-1249
[2]   Enhanced nitric oxide generation in root transition zone during the early stage of cadmium stress is required for maintaining root growth in barley [J].
Alemayehu, Aster ;
Zelinova, Veronika ;
Bocova, Beata ;
Huttova, Jana ;
Mistrik, Igor ;
Tamas, Ladislav .
PLANT AND SOIL, 2015, 390 (1-2) :213-222
[3]   Involvement of polyamine oxidase in wound healing [J].
Angelini, Riccardo ;
Tisi, Alessandra ;
Rea, Giuseppina ;
Chen, Martha M. ;
Botta, Maurizio ;
Federico, Rodolfo ;
Cona, Alessandra .
PLANT PHYSIOLOGY, 2008, 146 (01) :162-177
[4]   Interaction Between Polyamine and Nitric Oxide Signaling in Adaptive Responses to Drought in Cucumber [J].
Arasimowicz-Jelonek, M. ;
Floryszak-Wieczorek, J. ;
Kubis, J. .
JOURNAL OF PLANT GROWTH REGULATION, 2009, 28 (02) :177-186
[5]   Role of polyamines in the ontogeny of plants and their biotechnological applications [J].
Bais, HP ;
Ravishankar, GA .
PLANT CELL TISSUE AND ORGAN CULTURE, 2002, 69 (01) :1-34
[6]   Chlorophyll fluorescence: A probe of photosynthesis in vivo [J].
Baker, Neil R. .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :89-113
[7]   Current view of nitric oxide-responsive genes in plants [J].
Besson-Bard, Angelique ;
Astier, Jeremy ;
Rasul, Sumaira ;
Wawer, Izabela ;
Dubreuil-Maurizi, Carole ;
Jeandroz, Sylvain ;
Wendehenne, David .
PLANT SCIENCE, 2009, 177 (04) :302-309
[8]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[9]   ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis [J].
Bright, J ;
Desikan, R ;
Hancock, JT ;
Weir, IS ;
Neill, SJ .
PLANT JOURNAL, 2006, 45 (01) :113-122
[10]   MAGNESIUM-DEFICIENCY AND HIGH LIGHT-INTENSITY ENHANCE ACTIVITIES OF SUPEROXIDE-DISMUTASE, ASCORBATE PEROXIDASE, AND GLUTATHIONE-REDUCTASE IN BEAN-LEAVES [J].
CAKMAK, I ;
MARSCHNER, H .
PLANT PHYSIOLOGY, 1992, 98 (04) :1222-1227