REGULARITY OF MORREY COMMUTATORS

被引:35
作者
Adams, David R. [1 ]
Xiao, Jie [2 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Morrey-Sobolev spaces; commutators; traces; weights; Choquet integrals; fractional Laplacians; Riesz integrals; maximal operators; SPACES; POTENTIALS; INEQUALITY; OPERATORS; EQUATIONS;
D O I
10.1090/S0002-9947-2012-05595-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to presenting a new proof of boundedness of the commutator bI(alpha) - I(alpha)b (in which I-alpha and b are regarded as the Riesz and multiplication operators) acting on the Morrey space L-p,L-lambda under b is an element of BMO, and naturally, developing a regularity theory of commutators for Morrey-Sobolev spaces I-alpha(L-p,L-lambda) via a completely original iteration of I-alpha. Even in the special case of I-alpha(L-p), this is a new theory.
引用
收藏
页码:4801 / 4818
页数:18
相关论文
共 26 条
[1]  
ADAMS D. R., 1996, FUNCTION SPACES POTE
[2]  
Adams D. R., 1981, LECT LP POTENTIAL TH, V2
[3]   Morrey spaces in harmonic analysis [J].
Adams, David R. ;
Xiao, Jie .
ARKIV FOR MATEMATIK, 2012, 50 (02) :201-230
[4]   Morrey Potentials and Harmonic Maps [J].
Adams, David R. ;
Xiao, Jie .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) :439-456
[5]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[6]  
ADAMS DR, 1973, STUD MATH, V48, P99
[7]  
Adams DR, 2004, INDIANA U MATH J, V53, P1629
[8]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[9]   COMPOSITION OPERATORS ON POTENTIAL SPACES [J].
ADAMS, DR ;
FRAZIER, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (01) :155-165
[10]   EXISTENCE OF CAPACITARY STRONG TYPE ESTIMATES IN RN [J].
ADAMS, DR .
ARKIV FOR MATEMATIK, 1976, 14 (01) :125-140