On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of l-spheres

被引:10
作者
Berrizbeitia, Pedro
Gonzalez, Marcos J.
Sirvent, Victor F.
机构
[1] Departamento de Matemáticas, Universidad Simón Bolívar, Apartado 89000, Caracas
关键词
Lefschetz number; Lefschetz zeta function; Cyclotomic polynomial; Periodic point; Minimal sets of Lefschetz periods; Morse-Smale diffeomorphism; Quasi-unipotent map; QUASI-UNIPOTENT MAPS; POINTS; BEHAVIOR;
D O I
10.1016/j.topol.2017.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S-l x ... x (sic) n-times S-l, with l > 1. Among the quasi-unipotent maps are Morse-Smale diffeomorphisms. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse-Smale diffeomorphisms on X; we completely describe this set, for families containing infinitely many Morse-Smale diffeomorphisms. The results of the present article are based on the techniques used in [5], in the computation of the Lefschetz zeta function for quasi-unipotent self maps on the n-dimensional torus. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 444
页数:17
相关论文
共 30 条
[11]  
Eisenbud D., 1995, COMMUTATIVE ALGEBRA
[12]   Periodic points of holomorphic maps via Lefschetz numbers [J].
Fagella, N ;
Llibre, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4711-4730
[13]   PERIODIC BEHAVIOR OF MORSE-SMALE DIFFEOMORPHISMS [J].
FRANKS, J ;
NARASIMHAN, C .
INVENTIONES MATHEMATICAE, 1978, 48 (03) :279-292
[14]  
Franks J., 1982, CBSM REGIONAL C SER, V49
[15]   SOME SMOOTH MAPS WITH INFINITELY MANY HYPERBOLIC PERIODIC POINTS [J].
FRANKS, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 226 (FEB) :175-179
[16]  
GUIRAO JLG, 2010, J DIFFER EQU APPL, V16, P689, DOI DOI 10.1080/10236190903203887
[17]  
Hatcher A., 2002, Algebraic Topology
[18]   Cyclotomic polynomials and minimal sets of Lefschetz periods [J].
Iskra, Boris ;
Sirvent, Victor F. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (05) :763-783
[19]  
Jezierski Jerzy., 2006, Homotopy Methods in Topological Fixed and Periodic Points Theory
[20]   Intersections and transformations of complexes and manifolds [J].
Lefschetz, Solomon .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1926, 28 (1-4) :1-49